EGU24-10761, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10761
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Conceptual 3D groundwater models of offshore freshened groundwater extraction and its economic viability assessment

Daniel Zamrsky, Joep J.H. van Lith, and Rens van Beek
Daniel Zamrsky et al.
  • Department of Physical Geography, Utrecht University, Utrecht, The Netherlands

Offshore freshened groundwater reserves have been identified in numerous regions worldwide. These reserves were often deposited during past sea level lowstands and are therefore non-renewable and slowly salinized by infiltrating seawater. However, in some cases these offshore freshened groundwater reserves can be connected to inland groundwater systems and can be recharged by fresh groundwater inflow from the landward direction. It has recently been suggested that these offshore freshened groundwater reserves could provide an additional source of fresh (and brackish) water for coastal communities that often face increasing fresh water stress. The feasibility, both economic and physical, of offshore freshened groundwater extraction is investigated in this study. To assess this feasibility from a physical point of view we built a set of 3D semi-conceptual groundwater flow models using the imod-wq code which allows us to estimate the offshore groundwater salinity development over large time scales (i.e. one glacial-interglacial cycle). The result of these large time scale models can be interpreted as estimations of the current offshore groundwater salinity conditions and thus provide a better picture of the current presence and magnitude of the offshore freshened groundwater resources in the model domain. In the next modelling stress period we introduce a set of pumping wells into the offshore domain and simulate several offshore freshened groundwater extraction scenarios. In such way we can evaluate the time it takes for these offshore freshened groundwater reserves to be fully salinized and exhausted. Additionally, we can also assess any potential negative impacts on the groundwater system in the coastal hinterland such as decreasing groundwater levels and/or increased salinization.

In the second part of our study we evaluate the economic feasibility of the offshore freshened groundwater pumping and use as additional fresh water resource for coastal communities. Several coastal areas located in south and south-east Asia (e.g. Pearl River delta) were selected since this region is identified as a region with high possibility and magnitude of offshore freshened groundwater resources. The economic parameters that are taken into account as favourable for offshore freshened groundwater exploration are (i) the overall economic development (e.g. GDP, HDI), (ii) the presence of groundwater pumping and desalination plants inland meaning the technology is already present in the region and (iii) costs of fresh water and groundwater pumping and desalination infrastructure in the region. Our study is only the first step in assessing the feasibility of offshore freshened groundwater exploration and hopefully our approach will be improved and tested in other coastal regions around the world to evaluate the full potential of these still untapped fresh groundwater resources.

How to cite: Zamrsky, D., van Lith, J. J. H., and van Beek, R.: Conceptual 3D groundwater models of offshore freshened groundwater extraction and its economic viability assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10761, https://doi.org/10.5194/egusphere-egu24-10761, 2024.