EGU24-1085, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1085
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying the Importance of Wind Erosion of Bare Peat: Initial Insights from Field Measurements and Wind Tunnel Modelling

Yuzhe Zang1, Jeff Warburton1, Lian Gan2, and Richard Hardy1
Yuzhe Zang et al.
  • 1Durham University,Department of Geography, Durham, United Kingdom of Great Britain – England, Scotland, Wales (yuzhe.zang@durham.ac.uk)
  • 2Durham University,Department of Geography, Durham, United Kingdom of Great Britain – England, Scotland, Wales

Peat erosion and degradation contribute to 2-6% of total global emissions of carbon each year. Wind erosion of bare peat surfaces, is a significant component of erosion. However, how rapidly-changing bare peat surface aerodynamic properties affect erosion processes have not been fully quantified. This study investigates how the spatial and temporal characteristics of peatland wind erosion are controlled by the aerodynamic properties of the bare peat surface. Field measurements of local meteorology, peat surface properties and peat flux from a 3-ha bare area of upland blanket peat (North Pennines, UK), have been analysed during a sustained period of strong winds and rainfall (November to April 2023). Results demonstrate that the eroded peat flux is correlated with the southwest prevailing wind direction and as velocity increases, the flux becomes more focussed to the southwest (225°). Windward-facing peat fluxes are 4-9 times higher than those in the leeward direction. The vertical wind velocity profile over the bare peat shows a logarithmic pattern with height which is mirrored in the peat flux profile. Average friction velocity is only partially correlated to the peat flux during the strongest wind events suggesting that peat surface aerodynamic characteristics (roughness) also affect the pattern and magnitude of eroded peat flux. To investigate this hypothesis in greater detail wind tunnel experiments with a 3-D printed 1:1 rough peat surface model (0.5 x 0.7 m, average geometric roughness height 0.0345 m) in a large recirculating wind tunnel (2 x 0.6 x 0.6 m) are conducted to acquire the wind velocity profile over the peat boundary surface at 12 carefully selected characteristic locations. Experiments are conducted under free stream wind velocities at 2, 4, 6, 8, 10 m s-1 which are representative to the wind velocities observed in the field. Velocity measurements are taken by traversing a 5-hole probe in a normal direction with a spatial resolution of 2 mm within the boundary layer. Velocity signals are sampled at 500 Hz over 12 seconds at each sampling location. Flow properties including time-mean velocity, turbulence kinetic energy and wall shear stresses over the rough peat surface are analysed. These provide details of the wind flow field over the peat microtopography and allow us to investigate spatially and temporally resolved airflow dynamics. Further work using numerical modelling is planned to test the field observations and wind tunnel experiments and define in detail how surface roughness influences erosion of bare peat.

How to cite: Zang, Y., Warburton, J., Gan, L., and Hardy, R.: Quantifying the Importance of Wind Erosion of Bare Peat: Initial Insights from Field Measurements and Wind Tunnel Modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1085, https://doi.org/10.5194/egusphere-egu24-1085, 2024.