EGU24-10944, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10944
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Constraining global mantle circulation models with global seismic observations

William Sturgeon1, Ana M.G. Ferreira1, James Panton2, and J. Huw Davies2
William Sturgeon et al.
  • 1University College London, Earth Sciences, Glasbury, United Kingdom of Great Britain – England, Scotland, Wales (william.sturgeon.12@ucl.ac.uk)
  • 2School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK

In order to improve our understanding of mantle flow, we require a joint collaboration between all fields of Earth Sciences. Seismic tomography provides key information on the current state of the mantle and therefore can constrain mantle circulation models. We present high-resolution (degree-60) global models of frequency-dependent phase and group velocity measurements from huge a huge dataset of ~47 million Rayleigh and Love waves. These include fundamental mode measurements, which are sensitive to the uppermost mantle and up to 6th overtone, adding sensitivity to the transition zone, covering a period range of 16-375 s. We also present global models of mantle attenuation (degree-20), made from ~10 million Rayleigh wave amplitude measurements, including fundamental and up to 4th overtone measurements (35-275 s). All seismic maps presented also have associated uncertainty maps, which are essential for robust interpretation but also for multidisciplinary interpretations of mantle circulation models.

We constrain 3D mantle circulation models, known as TERRA models, at the present day. In order to do this, we construct 1D profiles of velocities and density from a suite of TERRA models on a 2x2 degree grid. Forward modelling of each 1D profile using MINEOS provides global predictions of seismic observables at all seismic wave periods, including phase velocity and group velocity. A misfit can then be calculated between the seismic models and predictions from the suite of TERRA models. This provides constraints on which TERRA models are most Earth-like, which will improve our understanding of mantle flow.

How to cite: Sturgeon, W., Ferreira, A. M. G., Panton, J., and Davies, J. H.: Constraining global mantle circulation models with global seismic observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10944, https://doi.org/10.5194/egusphere-egu24-10944, 2024.