EGU24-10969, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10969
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Cation Exchange Capacity Quantifies the Link Between Mineral Surface Chemistry and Frictional-Mechanical Behavior of Simulated Fault Gouges

Matt Ikari1 and Marianne Conin2
Matt Ikari and Marianne Conin
  • 1Universität Bremen, MARUM, Bremen, Germany (mikari@marum.de)
  • 2University of Lorraine, Nancy, France (marianne.conin@univ-lorraine.fr)

The slip behavior of crustal faults is known to be controlled by the mineralogic composition of the fault gouge. The exact properties determining the frictional behavior of geologic materials, including diverse remains an important question. Here, we use a geochemical approach considering the role of water-rock interactions. As a mechanism, we suspect that the mineral surface charge allows attractive and repulsive forces (Van Der Waals type), and that those forces may influence the static mechanical behavior of clays (cohesion, static friction).  On the other hand, we suspect that the water bound to the mineral surfaces may play a role during shearing.  To address these ideas, we measured the cation exchange capacity (CEC) of 10 different rock and mineral types, including non-clays and a range of phyllosilicate minerals, using CEC as a proxy for the mineral surface charge and the ability to bind water to the mineral surfaces.  For these materials, we conducted laboratory shearing experiments measuring the pre-shear cohesion, peak friction coefficient, residual friction coefficient, post-shear cohesion, and velocity-dependent friction parameters under 10 MPa effective normal stress.  
Our results show that low CEC materials (< 3 mEq/100g) tend to exhibit high friction, low cohesion, and show velocity-weakening frictional behavior. The phyllosilicate minerals exhibit larger CEC values up to 78 mEq/100g and correspondingly lower friction coefficients, higher cohesion, and velocity-strengthening frictional behavior. Zeolite exhibits a relatively high CEC value typical of phyllosilicates, but its strength and frictional characteristics are that of a non-clay with low CEC. This suggests that grain shape and contact asperity size may be more important for non-phyllosilicates. For phyllosilicates, we suggest that the systematic patterns in strength and frictional behavior as a function of CEC could be explained by water bound to the mineral surfaces, creating bridges of hydrogen or van der Waals bonds when the particles are in contact. Such bonding explains the large cohesion values for high-CEC materials under zero effective stress, whereas surface-bound water trapped between the particles under load explains low friction.  Beyond the results of this study, CEC appears to be a controlling factor for other properties such as permeability and even the amount of bound DNA in sediments.

 

How to cite: Ikari, M. and Conin, M.: Cation Exchange Capacity Quantifies the Link Between Mineral Surface Chemistry and Frictional-Mechanical Behavior of Simulated Fault Gouges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10969, https://doi.org/10.5194/egusphere-egu24-10969, 2024.