EGU24-11008, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11008
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Application of a new statistically rigorous comparison tool of observed and modelled flow directions of the last British-Irish ice sheet over time

Rosie Archer1, Jeremy Ely1, Timothy Heaton2, Frances Butcher1, Anna Hughes3, and Chris Clark1
Rosie Archer et al.
  • 1Department of Geography, University of Sheffield, UK (rarcher4@sheffield.ac.uk)
  • 2Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
  • 3Department of Geography, The University of Manchester, Manchester, UK

Past ice flow direction can be inferred through mapping of subglacial lineations (e.g. drumlins and mega-scale glacial lineations). A numerical ice sheet model can also be used to reconstruct possible ice flow directions according to ice physics. These two methods are rarely integrated to see if the model can explain the observational data. Previous model-data comparison workflows made a large step forward. However, they lack statistical rigour and certain capabilities, such as comparing an ensemble of model simulations. To overcome these challenges, we created the Likelihood of Accordant Lineations Analysis (LALA) tool.  LALA is a tool to compare numerical model ice sheet simulations to observational data of past flow direction. LALA was created to take a step forward in improving model-data comparisons; making comparisons statistically rigorous and adding the ability to directly grade multiple simulations against each other, a feature that was missing from previous tools. For this poster, we show an example of the tool in action and use LALA to compare model simulations of the British-Irish ice sheet and observations of flow direction from subglacial lineations taken from the BRITICE-CHRONO project. We present the best and the worst fitting simulations according to LALA. We also dissect the score produced to give an indication of the flow directions which are most (and least) regularly matched by the numerical modelling. These results highlight opportunities for model development and the potential to reevaluate observations.

How to cite: Archer, R., Ely, J., Heaton, T., Butcher, F., Hughes, A., and Clark, C.: Application of a new statistically rigorous comparison tool of observed and modelled flow directions of the last British-Irish ice sheet over time, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11008, https://doi.org/10.5194/egusphere-egu24-11008, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 10 Apr 2024, no comments