EGU24-11257, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11257
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Locating charged regions in extensive layer cloud

R.Giles Harrison and Keri Nicoll
R.Giles Harrison and Keri Nicoll
  • University of Reading, Meteorology, Reading, United Kingdom of Great Britain – England, Scotland, Wales (r.g.harrison@reading.ac.uk)

Extensive layer clouds are common in Earth’s atmosphere. They acquire charge at their upper and lower boundaries, from the vertical current flowing in the global atmospheric electric circuit. The quantity of charge collected is related to the current, the transition distance from clear air to cloudy air at the cloud boundary, and the background cosmic ray ionisation. The transition distance is the region in which a change in conductivity occurs, which determines the charge acquisition. This differs between cloud top and cloud base. At cloud top, the boundary transition distance is closely related to the temperature inversion, which can be less than the transition distance at cloud base. At cloud base, the transition distance depends on droplet growth rate and updraft speed. The combined effects of the local ionisation, current flow and conductivity gradient leads to droplet charging.

Using instrumentation carried on enhanced meteorological radiosondes, the extent of the charged region in extensive layer clouds has been observed with specially developed cloud sensors operating at multiple optical wavelengths, simultaneously with the in situ electrical measurements. (Further, in some situations, ceilometer measurements of backscatter are also available). These soundings are compared with modelled profiles of droplet properties and layer cloud charges, for situations characteristic of mid-latitude and polar clouds. Effects of the droplet size distribution on the layer cloud electrification are also investigated, and responses to variations in cosmic ray ion production.

Charging is known to affect some aspects of the microphysical behaviour of droplets, such as their evaporation and growth rates. This may in turn influence properties of layer clouds in the climate system.

How to cite: Harrison, R. G. and Nicoll, K.: Locating charged regions in extensive layer cloud, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11257, https://doi.org/10.5194/egusphere-egu24-11257, 2024.