EGU24-11587, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11587
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Climatology and moisture sources of heavy rainfall in the Andes of southern Ecuador

Diego Urdiales-Flores1, Gregoire Mariethoz1, Rolando Célleri2, and Nadav Peleg1
Diego Urdiales-Flores et al.
  • 1Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
  • 2Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Ecuador

Mountains cover approximately one-quarter of the total land surface on the planet, and a significant fraction of the world’s population lives in their vicinity. Orography critically affects weather processes at all scales and, in connection with factors such as land-cover heterogeneity and mesoscale atmospheric process, is responsible for high spatial variability in mountain weather, such as the Tropical Andes. Due to this high complexity, monitoring the atmosphere in the Ecuadorian Andes has remained a challenge due to the lack of high spatio-temporal resolution operational observing systems. We studied heavy rainfall associated with floods to identify the main rain types and their sources of moisture based on non-stationary rainfall-similarity indices and Lagrangian approaches. We analyzed five years of data collected from a high space-time resolution (5 min and 500 m) X-band weather radar that was located at 4450 m a.s.l in the Tropical Andes of southern Ecuador. To identify the origin and trajectories of water vapor masses, we used the NOAA meteorological database (GDAS, global data assimilation system, at 0.5° resolution). Our analysis shows that the heavy rainfall in the region can be divided into five rainfall types: two spatially-clustered rain types (convective) and three spatially-homogenous rain types (stratiform). We found that air masses typing as convective reach the study area preferentially from the eastern flank of the Andes through the Amazon basin (~ 70% of all events). We also compared discharge data with rain types and discussed the type and source of rainfall potentially responsible for triggering flash floods in the Andes of southern Ecuador.

How to cite: Urdiales-Flores, D., Mariethoz, G., Célleri, R., and Peleg, N.: Climatology and moisture sources of heavy rainfall in the Andes of southern Ecuador, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11587, https://doi.org/10.5194/egusphere-egu24-11587, 2024.