A Geospatial Overview of Agricultural Long-Term Field Experiments across Europe
- 1Leibniz Center for Agricultural Landscape Research (ZALF, Agricultural Landscape Systems, Germany (cenk.doenmez@zalf.de)
- 2Cukurova University, Landscape Architecture Department, Remote Sensing and GIS Laboratory, Adana 01330, Turkey
- 3Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- 4Eberswalde University for Sustainable Development (HNEE), 16225 Eberswalde, Germany
Long-Term Field Experiments (LTEs) are agricultural infrastructures for studying the long-term effects of different management practices and soil and crop properties in changing climate conditions. These experiments are essential to examine the impact of management and environment on crop production and soil resources on different soil textures and types. Some of those LTEs have average times of 20-50 years, even more than 100 years. These infrastructures are thus scientific heritages with high values of agricultural data; however, LTE-related information was difficult to find since it was scattered. To close this gap, we developed a geospatial data infrastructure, including an LTE overview map to compile and analyze the meta-information of the LTEs across Europe. The map provides a spatial representation of LTEs and the meta-information, collected by extensive literature review and factsheets in collaboration with BonaRes and EJPSoil projects, clustered in different categories (management operations, land use, duration, status, etc.) (Grosse et al. 2021; Donmez et al., 2022; Blanchy et al., 2023; Donmez et al., 2023). A threshold filter with a minimum duration of 20 years was applied, which results in a total of 500 LTEs across Europe and included into the map. The clusters of LTEs were geospatially analyzed to provide inputs for the agricultural sector, scientists, farmers and policy-makers. The fertilization treatment was the major research theme of collected and studied LTEs, followed by crop rotation and tillage trials. Bringing the meta information of dispersed LTEs through the development of the LTE overview map is expected to help developing a mutual management framework of efficient agricultural production by revealing the LTE potential internationally. This will contribute to scaling up the agricultural practices from site to landscape level for increasing the climate change adaptation to agricultural yield and management.
References
Donmez C., Schmidt M., Cilek A., Grosse M., Paul C., Hierold W., Helming K., (2023): Climate Change Impacts on Long-Term Field Experiments in Germany. https://doi.org/10.1016/j.agsy.2022.103578. Vol.205, 103578. Agricultural Systems.
Blanchy G., D’Hose T., Donmez C., Hoffmann C., Makoschitz L., Murugan R., O’Sullivan L., Sanden T., Spiegel A., Svoboda N., Boltenstern S.Z., Klummp K., (2023): An open-source database of European long-term field experiments. https://doi.org/10.1111/sum.12978 Soil Use and Management
Donmez C., Blanchy G., Svoboda N., D’Hose T., Hoffmann C., Hierold W., Klummp K., (2022): Provision of the metadata of European Agricultural Long-Term Experiments through BonaRes and EJP SOIL Collaboration. Data in Brief. https://doi.org/10.1016/j.dib.2022.108226.
Grosse, M., Ahlborn, M.C., Hierold, W. (2021): Metadata of agricultural long-term experiments in Europe exclusive of Germany. Data in Brief 38, https://doi.org/10.1016/j.dib.2021.107322
How to cite: Donmez, C., Hoffmann, C., Svoboda, N., D'Hose, T., Specka, X., and Helming, K.: A Geospatial Overview of Agricultural Long-Term Field Experiments across Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11605, https://doi.org/10.5194/egusphere-egu24-11605, 2024.