EGU24-11634, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11634
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Fault Nucleation and Reactivation in Displaced Fault Systems: An Experimental Study

Milad Naderloo, Jan Dirk Jansen, and Auke Barnhoorn
Milad Naderloo et al.
  • Delft University of Technology, Civil Engineering and Geoscience , Geoscience & Engineering, Netherlands (m.naderloo@tudelft.nl)

Understanding fault slip nucleation within the reservoir interval and its propagation beyond the reservoir is essential. Analytical and numerical studies have shown that, depending on the type of operation (injection/depletion), fault slip can nucleate at external or inner corners along the displaced fault system, driven by positive peak shear stresses. In the case of depletion, slip patches gradually start at the inner corners and grow towards the inner part of the reservoir, merging with further depletion. Conversely, injection or increased pore pressure leads to slip patches at external corners, potentially propagating beyond the reservoir into the overburden and underburden. We conducted triaxial experiments on small-scale (mm scale) cylindrical samples containing an entirely displaced vertical fault to investigate fault reactivation and slip nucleation in such settings. Two types of stress paths, monotonic and cyclic, were applied to examine the effects of stress patterns on slip nucleation. For this purpose, we utilized strain gauges to measure differential compaction along the displaced fault directly on the small-scale samples. Direct measurements with a strain gauge network adjacent to the displaced fault system during the monotonic test revealed that differential compaction intensifies from the top of the sample towards the internal corner at the center of the fault where different layers are juxtaposed vertically, indicating a variation in the stress field surrounding the fault plane. Furthermore, results from the cyclic test showed that the differential compaction increases with an increasing number of cycles. Our direct measurements near the displaced fault plane confirm/match the anomalies and peaks in stress observed in previous numerical and analytical studies.

How to cite: Naderloo, M., Jansen, J. D., and Barnhoorn, A.: Fault Nucleation and Reactivation in Displaced Fault Systems: An Experimental Study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11634, https://doi.org/10.5194/egusphere-egu24-11634, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 22 Apr 2024, no comments