EGU24-11825, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11825
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tectonostratigraphic evolution of the Tainan Margin (NE South China Sea): comparison with the Pearl River Mouth Basin

Mateus Rodrigues de Vargas1, Geoffroy Mohn1, Julie Tugend1,2, Nick Kusznir3, and Andrew Lin4
Mateus Rodrigues de Vargas et al.
  • 1Géosciences et Environnement Cergy (GEC), CY Cergy Paris Université, Neuville-sur-Oise, 95000, France
  • 2Commission for the Geological Map of the World, Paris, France
  • 3Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
  • 4Department of Earth Sciences & Institute of Geophysics National Central University, Taoyuan, Taiwan

The wide rifting mode that preceded the opening of the South China Sea (SCS) in the Cenozoic generated a set of Paleogene rift basins presently buried under thick post-rift sedimentary infill. Much of the tectonostratigraphic evolution of the South China Sea is now relatively well-constrained (e.g., Pearl River Mouth Basin). However, the SCS's northeasternmost part (i.e., the Tainan margin sensu lato), which might represent the oldest passive margin segment, remains to be integrated into the framework of the rifting and opening of the SCS.

This work aims to review and revisit the tectonostratigraphic evolution of the Tainan margin. To do so, an integrative approach has been used combining the analysis of seismic reflection and gravity data. We use 3D gravity inversion to determine the distribution of Moho depth and crustal thickness within this margin segment. The gravity inversion scheme incorporates a lithosphere thermal gravity anomaly correction, which is critically important because of the elevated geothermal gradient within the young oceanic lithosphere of the South China Sea and its continental margins. In the Tainan margin, results show contrasted crustal domains from the continental shelf, to the distal margin and oceanic domain.

Only limited crustal thinning is observed over the continental shelf where a succession of rift basins is documented (i.e., Taihsi, Nanjihtao, and Penghu basins) that are part of the Northern Rift System. In contrast, the distal Tainan margin shows greater crustal thinning to less than 10 km thick under an aborted breakup basin, thereby forming the Southern Rift System. To the south, this basin is separated from the unambiguous oceanic domain (6 to 8 km thick) by a comparatively thicker crustal block (~ 10 to 15 km thick). This crustal block forms the Southern High where numerous volcanic edifices and magmatic intrusions are observed or inferred.

Half-grabens of the Northern Rift System are controlled by counter-regional faults and filled by Paleocene to Eocene syn-rift sediments. For the distal domain, no well calibration is available. There, we identified several seismic units bounded by regional unconformities. Our results show relatively thin syn-rift sediments locally controlled by a low-angle normal fault system in the Southern Rift System. In contrast, thick post-rift sequences are observed except over the Southern High.

Based on our results, we propose a review of structural style and age correlations from the continental shelf to the distal domains of the Tainan margin. To illustrate along-strike variations of the crustal structure and stratigraphic style, we build an array of regional geological cross-sections that are further compared with existing observations in the adjacent Pearl River Mouth Basin.

How to cite: Rodrigues de Vargas, M., Mohn, G., Tugend, J., Kusznir, N., and Lin, A.: Tectonostratigraphic evolution of the Tainan Margin (NE South China Sea): comparison with the Pearl River Mouth Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11825, https://doi.org/10.5194/egusphere-egu24-11825, 2024.