EGU24-11879, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11879
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimates of Polar Ocean CO2 Uptake from Atmospheric Inverse Analyses 

Parvadha Suntharalingam, Zhaohui Chen, and Jayashree Ghosh
Parvadha Suntharalingam et al.
  • University of East Anglia, UK, School of Environmental Sciences, Norwich, United Kingdom of Great Britain – England, Scotland, Wales (p.suntharalingam@uea.ac.uk)

Estimates of global scale air-sea CO2 fluxes have traditionally been derived from ocean biogeochemistry models and ocean surface pCO2 data products (Friedlingstein et al. 2022). An alternative means of estimating ocean carbon uptake is provided by atmospheric inversions; these use optimization procedures and data assimilation methods to combine atmospheric CO2 measurements with numerical transport model simulations and prior knowledge of air-sea fluxes. 

Here we use the GEOSChem-LETKF (GCLETKF) inverse system (Chen et al. 2021) in conjunction with atmospheric observations from the NOAA-GML surface CO2 measurement network to derive grid-scale air-sea CO2 flux estimates for the period 2000-2017. We focus, in particular, on estimates of CO2 uptake by the polar oceans (Southern and Arctic oceans). These  regions have accounted for a significant component of global oceanic carbon uptake  in recent decades (e.g., more than 20% of global ocean uptake, in comparison to their ocean areal  extent of < 10%).

We present GCLETKF estimates of ocean CO2 uptake at global and regional scales, and assess the robustness of our results with a suite of metrics that include model concentration bias, CO2 flux error reduction, and comparison to independent atmospheric measurements. GCLETKF flux estimates for the 2000-2017 period indicate regional CO2  uptake of 0.1-0.2 PgC/year for the Arctic,  and  0.45-0.55 PgC/yr for the Southern Ocean. We also provide summary estimates of the  interannual variations and  decadal-scale trends of the polar ocean carbon fluxes, and compare the GCLETKF results  to estimates derived from global ocean biogeochemistry models and surface ocean pCO2 data products.  

How to cite: Suntharalingam, P., Chen, Z., and Ghosh, J.: Estimates of Polar Ocean CO2 Uptake from Atmospheric Inverse Analyses , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11879, https://doi.org/10.5194/egusphere-egu24-11879, 2024.