EGU24-12002, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12002
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ground-penetrating radar can ascertain the influence of biochar on soil wetting

Lakshman Galagedara1, Sashini Pathirana2, and Manokararajah Krishnapillai3
Lakshman Galagedara et al.
  • 1Memorial University of Newfoundland, Grenfell Campus, School of Science and the Environment, Corner Brook, Canada (lgalagedara@mun.ca)
  • 2Memorial University of Newfoundland, Grenfell Campus, School of Science and the Environment, Corner Brook, Canada (epspathirana@mun.ca)
  • 3Memorial University of Newfoundland, Grenfell Campus, School of Science and the Environment, Corner Brook, Canada (kmano55@hotmail.com)

Incorporating biochar (BC) as a soil amendment has become a prominent agricultural management practice since it has many advantages. Most soils amended with BC have shown improvements in soil physical and hydraulic properties, including bulk density, soil porosity, water retention, field capacity, and permanent wilting point. Ground-penetrating radar (GPR) is a non-destructive geophysical technique that is used to study soil properties and state variables. Yet, there is a lack of research studying the influence of amendments on soil hydrology using GPR.  Therefore, this study was aimed at evaluating the ability of GPR in assessing the effect of BC on soil hydrology. The experiment was conducted under laboratory conditions using plastic containers measuring 28.6 cm in length, 20 cm in width and 16.4 cm in height. These plastic containers were filled up to 14 cm height with three different treatments (T); T1 (100% Sand+0% BC), T2 (99.5% Sand+0.5% BC), and T3 (98% Sand+2% BC) on a mass basis. Soil moisture sensors were placed horizontally at 2, 7, and 12 cm depths while packing the containers. The GPR data were collected using 1000 MHz center frequency transducers by keeping transmitter and receiver on opposite sides of the container (zero-offset profiling survey) at 20 cm antenna offset. Data were collected before, during, and after the wetting process over a one-hour timeframe. A 204 mL of water was applied every 4 min (13 times) to increase the soil water content at each time by 2% from initial water content. The GPR data were processed, and radargrams were prepared to observe the wetting front movement. Soil water contents were estimated utilizing the travel time of the GPR direct wave through the treatment media. GPR travel time and moisture sensor data were compared in each treatment. The GPR estimated soil water contents correlated well with moisture sensor data (correlation coefficient (r)>0.93) in all three treatments. Results have shown that the travel time of GPR direct wave responded differently for three treatments. The rate of change in GPR estimated soil water content over time exhibits an increase with the percentage of BC (T1<T2<T3). This suggests that the amendments with BC influence the soil water dynamics as expected, and the GPR effectively captures these rapid water content changes indicating its ability to monitor soil water dynamics non-destructively. Furthermore, the identification of the wetting pattern by GPR was noticeably distinct as compared to that observed with soil moisture probes in the BC amended treatments (T2 and T3), as compared to 100% sand (T1). Accordingly, our study demonstrates the capability of GPR in non-destructively capturing and distinguishing soil water dynamics influenced by BC amendments, emphasizing its potential for evaluating the impact of BC on soil hydrology.

How to cite: Galagedara, L., Pathirana, S., and Krishnapillai, M.: Ground-penetrating radar can ascertain the influence of biochar on soil wetting, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12002, https://doi.org/10.5194/egusphere-egu24-12002, 2024.