3D joint inversion of regional magnetotelluric, seismic, gravity and magnetic datasets to image lithospheric structure of Ireland
- 1Dublin Institute for Advanced Studies, Ireland
- 2iCRAG - SFI Research Centre in Applied Geosciences, Ireland
Regional gravity and magnetic surveys are essential sources of information about the structure and geodynamics of the lithosphere. However, geologically meaningful inversion of gravity and magnetic data usually requires integration with other geophysical methods. We have developed a 3-D joint inversion framework that has the flexibility of using independent inversion codes and model discretizations for each of the included methods, is easily expandable and supports a wide range of the coupling constraints. Here we show its application to the regional geophysical datasets available in Ireland. We present the results of joint inversion of long-period magnetotelluric data, seismic traveltimes, and land gravity – a multiparameter geophysical model of the crust and uppermost mantle of the whole Ireland. On a smaller scale, we present the results of joint inversion of gravity, airborne magnetic and magnetotelluric data for the Limerick Basin, focusing on imaging of a Carboniferous volcanic structure. The main aim is to better understand the Pb-Zn mineral systems which are controlled by the tectonics of the basement and lower crust. Exploration-scale geophysical surveys and geothermal exploration will also benefit from the regional 3-D geophysical models.
How to cite: Molodtsov, D., Kiyan, D., and Bean, C.: 3D joint inversion of regional magnetotelluric, seismic, gravity and magnetic datasets to image lithospheric structure of Ireland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12072, https://doi.org/10.5194/egusphere-egu24-12072, 2024.