EGU24-12129, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12129
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Soil water holding capacity as descriptor of soil health at district scale – a sensitivity study

Thomas Weninger, Irene Schwaighofer, Florian Darmann, Thomas Brunner, and Peter Strauss
Thomas Weninger et al.
  • Federal Agency for Water Management, Institute for Land and Water Management Research, Petzenkirchen, Austria (thomas.weninger@baw.at)

The proposal for the European Soil Monitoring Law includes an integrated value of soil water holding capacity to be determined as a proxy for soil quality for whole soil districts. As this is a relatively new but interesting approach, a number of details of the assessment procedure remain open at the current stage of formulation. The aim of this study is to quantify the effects of the choice of different options on the overall result, focusing on the delineation of soil districts in different sizes, the detailed definition of the respective soil property, and the treatment of sealed areas.

High-resolution data for soil hydrological properties for two Austrian provinces are used as a basis, including different approaches to calculate soil water holding capacity. The size of the study area corresponds to the maximum size of a soil district as proposed. Thus, a variation of three size levels is possible, namely the whole area, major river catchments, and agro-geographical sub-units. The term soil water holding capacity is basically defined in the proposed EU Directive, but several options for its determination are possible. We used two different pedotransfer functions to derive soil water holding capacity values and an additional method based on averaging results from randomly located sampling points. Soil sealing is a major threat to hydrological soil functionality, and its assessment over large areas is still not standardized. Here, the European LUISA land use/land cover dataset for 2020 (1 km resolution) and a national dataset with higher resolution are used. Both datasets are optionally overlaid with the Copernicus imperviousness layer involves gradual information about surface imperviousness.

By combining all these factors with each other, different ways were evaluated to determine the target value of soil water holding capacity integrated on a regional scale. Differences in the results and their sensitivity to input variations are quantified to inform policy decisions in the implementation of the European Soil Monitoring Law in the member states.

How to cite: Weninger, T., Schwaighofer, I., Darmann, F., Brunner, T., and Strauss, P.: Soil water holding capacity as descriptor of soil health at district scale – a sensitivity study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12129, https://doi.org/10.5194/egusphere-egu24-12129, 2024.