EGU24-12130, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12130
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Structure and Dynamics of the Porcupine Magma-Poor Continental Margin from new Ocean Bottom Seismometer Data

Ibrahim Yusuf1, Stephen M Jones1, Tim Reston1, Thomas Funck2, Brian M O'Reilly3, and John R Hopper2
Ibrahim Yusuf et al.
  • 1University of Birmingham, Birmingham, United Kingdom of Great Britain (iiy296@student.bham.ac.uk)
  • 2Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
  • 3Dublin Institute for Advanced Studies, Dublin, Ireland

The Porcupine Basin, situated in the North Atlantic, serves as a unique natural laboratory for investigating the temporal evolution of magma-poor rifts. Notably, the basin exhibits a progressive increase in the total degree of stretching from north to south, offering a valuable opportunity to interpret its structure in terms of the temporal evolution of magma-poor rifted margins. This study, as part of the broader PORO-CLIM project, focuses on Profile 2 to construct a whole-crustal seismic velocity model and integrate it with existing data to unravel the complete rifting history of the Porcupine Basin.

In the northern region, Reston et al. (2004) identified a detachment fault, the P-reflector, indicating substantial rifting  [1]. Recent analyses by Prada et al. (2017) extended this understanding to the central basin, revealing progressive crustal thinning and mantle serpentinization [2]. However, the southern sector remains largely unexplored. This project aims to capitalise on newly acquired Ocean Bottom Seismometer (OBS) data from PORO-CLIM Profile 2 to image the deep crustal structure and complement this with basement mapping of the southern Porcupine Basin using industry 2D seismic data.

Seismic refraction data from 20 OBS along a 226 km transect form the basis for constructing a comprehensive crustal velocity model. Utilising the RAYINV modelling package, a layer-by-layer forward modelling approach is employed to correlate calculated and observed travel times. Concurrently, structural mapping using long-offset 2D seismic reflection data assists in delineating major faults and regions of mantle unroofing, contributing to the understanding of the Porcupine Basin's subsurface. Preliminary findings reveal extreme crustal thinning and asymmetry, highlighting north-to-south crustal thinning and the emergence of the P-reflector in the southern region of the Porcupine Basin.

[1] Reston, T.J., Gaw, V., Pennell, J., Klaeschen, D., Stubenrauch, A. and Walker, I. (2004). Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine Median High: implications for the formation of non-volcanic rifted margins. Journal of the Geological Society, [online] 161, pp.783–798.

[2] Prada, M., Watremez, L., Chen, C., O’Reilly, B.M., Minshull, T.A., Reston, T.J., Shannon, P.M., Klaeschen, D., Wagner, G. and Gaw, V. (2017). Crustal strain dependent serpentinisation in the Porcupine Basin, offshore Ireland. Earth and Planetary Science Letters, [online] 474, pp.148–159.

How to cite: Yusuf, I., M Jones, S., Reston, T., Funck, T., M O'Reilly, B., and R Hopper, J.: Structure and Dynamics of the Porcupine Magma-Poor Continental Margin from new Ocean Bottom Seismometer Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12130, https://doi.org/10.5194/egusphere-egu24-12130, 2024.