EGU24-12274, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12274
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

MOSMIN: Multiscale observation services for mining related deposits

Sandra Lorenz, Moritz Kirsch, René Booysen, and Richard Gloaguen
Sandra Lorenz et al.
  • Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Freiberg, Germany (s.lorenz@hzdr.de)

The transition towards a green economy has led to an increased demand for raw materials, which are mainly sourced by mining. Mining activities generate residues such as rock wastes, tailings and stockpiles. These materials are associated with environmental and safety risks that need to be carefully managed throughout their life cycle, with an emphasis on stability and the prevention of water and soil pollution. Earth-observation (EO)-based techniques are seldom used for monitoring these deposits, and multi-sensor field data is commonly not integrated despite recent technological advances. We will develop holistic, full-site services for the geotechnical and environmental monitoring as well as valorisation of mining-related deposits based on a combination of EO and in situ geophysical data. The work will be accomplished under the “Multiscale Observation Services for Mining related deposits” project (MOSMIN for short), and funded by the European Union Agency for the Space Programme (EUSPA) with project number 101131740. MOSMIN services will use Copernicus EO data for time-resolved, spatially extensive, remote monitoring of ground deformation and surface composition. Innovative change detection algorithms will highlight displacements and identify environmental hazards. Satellite data will be integrated with real-time, high-resolution data obtained from unoccupied aerial vehicles and sensors installed at the site, leveraging the power of machine learning for fusion and resolution enhancement of multi-scale, multi-source data. Novel, non-invasive geophysical techniques such as distributed fibre-optic sensing will provide subsurface information to identify potential risks such as internal deformation and seepage. In collaboration with international mining companies, MOSMIN will use pilot sites in the EU, Chile and Zambia to develop and trial comprehensive monitoring services, which are calculated to have a Total Available Market of €1.2bn and expect to be commercialised shortly after project completion by three industry partners. The MOSMIN integrative service and tools will improve the efficiency and reliability of monitoring, maximise resource utilisation and help mitigate environmental risks and the impact of mining operations. - On behalf of the MOSMIN consortium.

How to cite: Lorenz, S., Kirsch, M., Booysen, R., and Gloaguen, R.: MOSMIN: Multiscale observation services for mining related deposits, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12274, https://doi.org/10.5194/egusphere-egu24-12274, 2024.