Current and future glacier melt contribution to groundwater dynamics in a high-altitude, Himalaya basin
- Utrecht University, Physical Geography, Utrecht, Netherlands
While mountain groundwater in glacierized regions has gained increasing attention, comprehensive insights of glacier melt contributions to groundwater and their resurfacing patterns remain limited. Our study employs a cryosphere-surface hydrology model in combination with numerical groundwater simulations to estimate the water table variations across the high-altitude Langshisha basin in the Langtang Himalaya (4094-6049 m). We evaluate surface water-groundwater interactions amidst current and projected climatic conditions. Utilizing in-situ weather forcings and evaluated with field measurements, our findings indicate that glacier melt contributes up to 70% of groundwater recharge in the Langshisha basin during the 2012-2020 period. This substantial contribution is attributed to the basin's considerable glacier cover (40%) and its high elevation, where cold temperatures in areas above 5300 m limit melt and are underlain by permafrost, restricting recharge. Groundwater simulations based on these recharge rates reveal a high sensitivity to hydraulic conductivity parameters but are constrained by field measurements of creek exfiltration indicating a water table near the surface along the main streams. The combination of groundwater simulations and field measurements suggests that groundwater exfiltration along the proglacial stream is a predominant surface-water-groundwater exchange mechanism within the basin. Considering the important role of glacier melt in groundwater recharge, our study applies future climate scenarios to gauge the impact of warming trends and glacier retreat on surface water-groundwater dynamics within the basin.
How to cite: Aubry-Wake, C. and Immerzeel, W.: Current and future glacier melt contribution to groundwater dynamics in a high-altitude, Himalaya basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12337, https://doi.org/10.5194/egusphere-egu24-12337, 2024.