Unveiling coupling properties of subduction zones with novel telesismic waveform approaches
- University of Leeds, School of Earth and Environment, Leeds, United Kingdom (f.rappisi@leeds.ac.uk)
Subduction zones are among the most active tectonic areas on the planet. Their primary characteristic is the enormous amount of stress accumulated at the interface between the subducting oceanic plate and the overriding plate. The release of this stress is accommodated by a wide range of behaviours, ranging from aseismic slip (slip at speeds too slow to radiate seismic energy), through the spectrum of slow slip and tremor, to seismic slip capable of generating major earthquakes. The main investigative tools for subduction zones to map out this range of behaviour, and to assess the coupling properties of the subduction interface, involve the direct observation of ground movements through geodesy (either terrestrial or satellite-based) or through local seismic surveillance using near-field instrumentation, all of which are logistically complex, and typically only feasible on land.
Utilizing the recent expansion of seismic arrays in continental regions, we propose an alternative approach for the study of subduction zones that bypasses the aforementioned limitations through the use of teleseismic waves—recorded at a distance between 30º and 90º from the epicenter—based on the identification of the presence (or absence) of highly reflective layers at the megathrust interface. Previous studies using local seismic data have observed the presence of highly reflective layers, characterized by strong impedance contrasts, located at the megathrust interface, capable of producing a reflection in the wavefield that results into the presence of precursors of depth phases. Since impedance contrasts in the solid Earth are linked to variations in the elastic properties of the medium, reflectivity offers a window into the rheology of the plate interface. Understanding the reasons behind such strong impedance contrasts, their potential variability over time and space, could pave the way for understanding why the degree of coupling of subduction interfaces varies, whether it is related to transient processes, or if it is stable over time.
Here, we present an automated waveform processing approach designed to detect such reflections in remote seismic data, and illustrate this with a test region from the Central America subduction zone. We analyse waveforms produced by seismic events with magnitudes ranging from 4.5 to 5.5 occurring at different times and recorded by small aperture seismic arrays. Our observations in Central America prove to be an excellent tool for studying the coupling properties of the megathrust interface. This work represents a first attempt, with the ultimate goal of mapping subduction zones and their coupling properties, even in currently inaccessible submarine areas, allowing for a better understanding of the seismic risk that subduction zones represent.
How to cite: Rappisi, F., Craig, T., and Rost, S.: Unveiling coupling properties of subduction zones with novel telesismic waveform approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12443, https://doi.org/10.5194/egusphere-egu24-12443, 2024.