EGU24-12742, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12742
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Background Topography Affects the Degree of Three-Dimensionality of Tidal Sand Waves

Abdel Nnafie1, Janneke Krabbendam1, Bas Borsje2, and Huib de Swart1
Abdel Nnafie et al.
  • 1IMAU, Utrecht University, Utrecht, The Netherlands (a.nnafie@uu.nl)
  • 2Faculty of Engineering Technology, Twente University, Enschede, The Netherlands (b.w.borsje@utwente.nl)

Offshore tidal sand waves on the sandy bed of shallow continental shelf seas are more three-dimensional (3D) in some places than others, where 3D refers to a pattern that shows variations in three spatial directions. These sand waves often display meandering, splitting, or merging crestlines. The degree of three-dimensionality seems to vary especially when large-scale bedforms, such as tidal sand banks, are present underneath the sand waves. Understanding this behavior is important for offshore activities, such as offshore wind farm construction or the maintenance of navigation channels. In this study, the degree of three-dimensionality of sand waves at five sites in the North Sea is quantified with a new measure. Results show that tidal sand waves on top of tidal sand banks are more two-dimensional (2D) than those on bank slopes or in open areas. Numerical simulations performed with a new long-term sand wave model support these differences in sand wave patterns. The primary cause of these differences is attributed to the deflection of tidal flow over a sand bank, which causes sand wave crests to be more aligned with the bank at its top than at its slopes. It is subsequently made plausible that the different patterns result from the competition between two known mechanisms. These mechanisms are nonlinear interactions between sand waves themselves (SW-SW interactions) and nonlinear interactions between sand banks and sand waves (SB-SW interactions). On bank tops, SB-SW interactions favor a 2D pattern, while SW-SW interactions, which produce a 3D pattern elsewhere, are less effective.

How to cite: Nnafie, A., Krabbendam, J., Borsje, B., and de Swart, H.: Background Topography Affects the Degree of Three-Dimensionality of Tidal Sand Waves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12742, https://doi.org/10.5194/egusphere-egu24-12742, 2024.