P-wave anisotropic tomography unveils the crustal structure of Etna volcano (Italy)
- 1Università degli studi di Padova, Dipartimento di Geoscienze, Padova, Italy
- 2University of Leeds, School of Earth and Environment, Leeds, UK
- 3Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy
Mount Etna (Italy), renowned for its persistent eruptive activity, is a hazardous volcano shaped by the intricate interplay between magma uprising and a complex tectonic and geodynamic context. Despite extensive monitoring, seismic tomography encounters challenges in accurately depicting the shallow-intermediate P-wave velocity structures, primarily due to the common assumption of isotropy. This study discards such simplification, employing a novel methodology (Vanderbeek and Faccenda, 2021) to simultaneously invert for perturbations to P-wave isotropic velocity and three additional anisotropic parameters (i.e., magnitude of hexagonal anisotropy, azimuth, and dip of the symmetry axis).
By analysing the seismicity recorded in the Mt. Etna area from 2006 to 2016, we constructed 3D anisotropic P-wave tomography models to better constrain the crustal structure of Etna volcano within the framework of its local tectonic setting. The revealed anisotropy patterns are consistent with the structural trends of Etna, unveiling the depth extent of fault segments. We identify a high-velocity volume, deepening towards northwest, recognized as the collision-related subducting foreland units (i.e. Hyblean foreland carbonate slab; Firetto Carlino et al., 2022) that appear to confine a low velocity anomaly, hypothesized to be the expression of a deep magmatic reservoir. A likely tectonic-origin discontinuity affects the subducting units, facilitating the transfer of magma from depth to the surface. This geological setting may explain the presence of such a very active basaltic strato-volcano within an atypical collisional geodynamic context.
This research improves our understanding of the dynamics governing magma and fluid ascent beneath the volcanic edifice and emphasises the importance of considering anisotropy in seismic investigations. It contributes to our framework for understanding volcanic processes and mitigating associated risks.
VanderBeek, B. P., & Faccenda, M. (2021). Imaging upper mantle anisotropy with teleseismic P-wave delays: insights from tomographic reconstructions of subduction simulations. Geophysical Journal International, 225(3), 2097-2119.
Firetto Carlino, M., Scarfì, L., Cannavò, F., Barberi, G., Patanè, D., & Coltelli, M. (2022). Frequency-magnitude distribution of earthquakes at Etna volcano unravels critical stress changes along magma pathways. Communications Earth & Environment, 3(1), 68.
How to cite: Lo Bue, R., Rappisi, F., Firetto Carlino, M., Giampiccolo, E., Cocina, O., Vanderbeek, B., and Faccenda, M.: P-wave anisotropic tomography unveils the crustal structure of Etna volcano (Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12788, https://doi.org/10.5194/egusphere-egu24-12788, 2024.