EGU24-12862, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12862
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Active deformation within the slow-straining northernmost Africa region constrained by InSAR time-series

Renier Viltres1, Cécile Doubre1, Marie-Pierre Doin2, and Frédéric Masson1
Renier Viltres et al.
  • 1University of Strasbourg, ITES, Strasbourg, France (renierldgv@unistra.fr)
  • 2University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France

The present-day tectonics of the northernmost Africa region is dominated by the oblique convergence
between the Nubia and Eurasia plates initiated 35 Ma ago. GNSS-derived velocities indicate that the
relative plate motion of only ~5 mm/yr is accommodated within a wide region involving inland
and offshore tectonic structures, from Morocco to Tunisia and from the Mediterranean Sea to the Sahara
platform. Due to limited and sparse geodetic measurements, the main zones of strain accommodation as
well as the strain partitioning between thrust and strike-slip faults remain unresolved. However, despite
the low strain budget, significant seismicity and destroying earthquakes have been recorded in the region
with five M>6 events nucleated on both inland and offshore faults during the last decade.

To better identify the active inland faults and constrain their interseismic behavior for a better seismic
hazard assessment in northernmost Africa, we used multi-temporal InSAR analysis to produce the first
regional-scale interseismic velocity map of the region. The primary data consists of up to ~8 years of
SAR imagery from the Sentinel-1 satellite constellation for 6 tracks in both the ascending and descending
orbits. The data processing and the generation of InSAR-based time series describing the spatio-temporal
evolution of surface deformation were performed using the New Small Baselines Subset processing chain
(NSBAS, Doin et al. 2011). We followed a three-blocks processing strategy leading to (1) interferograms
generation, (2) phase unwrapping, and (3) time series estimation. Within the first block, interferometric
networks combining image pairs with short and long temporal baselines were defined to mitigate potential
bias introduced by changes in soil properties (e.g., snow, vegetation growth, dunes). Before unwrapping,
interferograms flattening, multi-looking, and atmospheric phase screen (APS) corrections based on the
ECMWF ERA-5 atmospheric model were implemented. The resulting time series of surface displacement
along the line-of-sight direction (LOS) for the 2014-2022 period were decomposed into the near-vertical
and horizontal (E-W) components and expressed into a Eurasia-fixed reference frame using the GNSS
velocities in Billi et al. (2023).

Our estimated deformation maps reveal multi-scale present-day motions, with large- and small-scale
signals suggesting tectonic origin and ground response to anthropogenic activity or landslides, respectively.
The oblique plate convergence involves the interseismic loading of a series of E-W oriented right-lateral
strike-slip inland faults. Between the longitudes ~3°W and ~9°E, this inland deformation is localized
within a 25-75 km wide zone consistent with a unique linear strike-slip fault without any clear uplift related
to thrusting on already mapped transfer structures. The rates and directions of surface displacements
suggest that the shortening component of the Nubia-Eurasia relative plate motion is almost entirely
accommodated by offshore tectonic structures which has an important impact on the assessment of
seismic and tsunamigenic hazards.

 

 

How to cite: Viltres, R., Doubre, C., Doin, M.-P., and Masson, F.: Active deformation within the slow-straining northernmost Africa region constrained by InSAR time-series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12862, https://doi.org/10.5194/egusphere-egu24-12862, 2024.