The Crevasse Depth Calving Law Applied to Ice Shelves: Insights from a 1D Flowline Model
- 1Physical Geography Department, Utrecht University, Utrecht, The Netherlands (f.maghaminick@uu.nl)
- 2School of Geography and Sustainable Development, university of St Andrews, St Andrews, Scotland (dib2@st-andrews.ac.uk)
We show that the model predicts deep crevasse penetration at locations where drag at the shelf boundaries diminishes,such as the grounding line or embayment mouths. Crevasse depth depends on the rate at which these resistance sources decrease along-flow, influencing the longitudinal stress gradient. While full-depth penetration may occur in thinned shelves (due to extensive basal melt), full-depth calving is generally not predicted for unconfined ice shelves. Observations of Antarctic ice shelves and floating ice tongues well beyond embayments or basal pinning points suggest that additional triggers, like slow rift growth, basal melting, or oceanographic stresses, are essential for calving.
How to cite: M. Nick, F. and Benn, D.: The Crevasse Depth Calving Law Applied to Ice Shelves: Insights from a 1D Flowline Model , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12886, https://doi.org/10.5194/egusphere-egu24-12886, 2024.