EGU24-12946, updated on 09 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of Internal Structure on Water Routing in a Semiarid Andean Glacier

Gonzalo Navarro1,2, Shelley MacDonell3, Rémi Valois4, Giulia de Pasquale1, and Benjamin Robson5
Gonzalo Navarro et al.
  • 1Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile (
  • 2Universidad de La Serena, La Serena, Chile
  • 3Waterways Centre, University of Canterbury and Lincoln University, Christchurch, New Zealand
  • 4Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes – EMMAH, Avignon Université, Avignon, France
  • 5Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Change, Bergen, Norway

In semiarid Andean regions, rock glaciers are more prevalent than debris-free glaciers and their relatively extensive areal coverage suggest the existence of significant frozen water reserves. Although there are some doubts whether permafrost landforms constitute a readily available water resource due to the effective thermal insulation provided by the active layer, there is some suggestion that permafrost can act as a primary factor controlling water flow and delivery to the catchment. The hydrogeomorphological connections and water system processes linking different hydrological units impacts the fate of the generated water, making it paramount to understand how water is transmitted from the headwater hydrological system to the wider catchment to better predict future impact of climate change in this important environment. However, unravelling their role is reasonably complicated since in semiarid regions glacial complexes (i.e. combination of glaciers and rock glaciers) are common and contain not only complicated structures but also complex hydrological connections.

In this study, the scientific understanding of the hydrological role of ice-debris glacial landforms is analysed to better understand how the transfer of water by glacier complexes relates to their internal structure. The research analyses the lower section of the Tapado glacier complex, in the Chilean semiarid Andes (30°S), which comprised the lower section of the debris-covered Tapado Glacier, that is in morphologic continuity to a rock glacier and a moraine at lower elevations. Geophysical measurements and elevation changes using uncrewed aerial vehicles (UAVs) were employed to inspect the internal structure of the selected ice-debris units in order to evaluate how it controls hydrological routing and storage, and in the delivery of cryospheric waters to the wider catchment.

Overall, internal structural arrangement and composition affect water routing and storage on the explored ice-debris landforms. Impermeable zones, characterised by massive glacial ice, ground ice or interstitial ice, not only represent a water storage capacity but are also a barrier to water flow. Therefore, at their interface with air-filled debris they also play a role in downstream water transmission, since sectors such as the debris layer (debris-covered glacier), active layer (rock glacier), intra-permafrost sectors (rock glacier), and main interstitial ice-free body of the moraine play important roles in the downglacier flow transfer. In addition, the potential subpermafrost hydrological connection between the rock glacier and the moraine area was recognised to occur as baseflow. Importantly, a potentially relevant hydrological role of the rock glacier is described based on its observed heterogenous internal structure associated with enhanced vertical infiltration compared to the debris-covered glacier. Lastly, in general, the moraine acts as a transmissive medium between generated glacial and snow meltwater and the proglacial area and river, buffering incoming flows due to the existence of interstitial ice within moraine structure, which also potentially enables deep groundwater circulation.

How to cite: Navarro, G., MacDonell, S., Valois, R., de Pasquale, G., and Robson, B.: Impact of Internal Structure on Water Routing in a Semiarid Andean Glacier, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12946,, 2024.