Freshwater fluxes drive decadal variability of the Amundsen Sea undercurrent and ice-shelf basal melt
- British Antarctic Survey, United Kingdom of Great Britain – England, Scotland, Wales (michai@bas.ac.uk)
The ice sheets flowing into the Amundsen Sea, West Antarctica, are losing mass faster than most others about the continent due to rapid basal melting of their floating ice shelf extensions. A key oceanographic control of the rate of ice-shelf basal melting is a warm eastward undercurrent that flows along the continental shelf break and eventually towards the ice shelves. On monthly timescales surface winds drive fast barotropic variability in the undercurrent. On decadal timescales, however, undercurrent variability is not well understood. We present model results that show that on decadal timescales undercurrent variability opposes wind variability, with this being a consequence of sea-ice and ice-shelf freshwater flux variability. Specifically, periods of fast (more eastward) undercurrent are a result of enhanced brine rejection north of the continental shelf break, which enhances the cross-slope pressure gradient at depth and accelerates the undercurrent baroclinically. Opposite anomalies in the sea-ice freshwater flux decelerate the undercurrent. A positive feedback mechanism between the undercurrent and ice-shelf basal melt strengthens the undercurrent anomalies. Lastly, we show that variability in sea-ice freshwater fluxes, and by extension the Amundsen Sea undercurrent and ice-shelf basal melt, can be attributed to tropical Pacific variability impacting atmospheric conditions over the Amundsen Sea.
How to cite: Haigh, M. and Holland, P.: Freshwater fluxes drive decadal variability of the Amundsen Sea undercurrent and ice-shelf basal melt, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1302, https://doi.org/10.5194/egusphere-egu24-1302, 2024.