EGU24-131, updated on 15 Aug 2024
https://doi.org/10.5194/egusphere-egu24-131
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A plastic tipping point: The influence of biofouling on the settling orientation of plastics.

James Lofty1, Pablo Ouro2, and Catherine Wilson1
James Lofty et al.
  • 1Cardiff University, School of Engineering, United Kingdom of Great Britain – England, Scotland, Wales
  • 2University of Manchester, School of Mechanical, Aerospace and Civil Engineering, United Kingdom of Great Britain – England, Scotland, Wales

The settling velocity of a plastic particle is a crucial descriptor for plastic transport in rivers. When a plastic particle is introduced into the riverine environment, the plastic’ surface provides a medium that enables the attachment, accumulation and growth of microorganisms, known as biofouling. While the settling velocity has been extensively studied for pristine plastics, the influence of biofouling on settling velocity and transport dynamics of plastics needs to be fully understood. Biofouling can alter a plastic particle's size, shape, weight, and buoyancy, potentially leading to an increase in settling velocity of up to 130% compared to the same pristine plastic. However, the effect of an uneven particle weight distribution, caused by heterogeneous biofilm growth, on the plastic’s settling orientation, vertical trajectory and subsequent settling velocity has yet to be investigated.

 

This study aims to quantify the impact of biofouling on the settling orientation of a plastic particle and describe its subsequent effect on settling velocity and pattern. To achieve this, we conducted experiments using a synchronised multi-camera setup and a three-dimensional particle reconstruction to characterise particle trajectories and settling orientations. Two sets of the same negatively buoyant PTFE plastic fragments and spheres were tested, namely: i) pristine plastics, and ii) plastics subjected to biofilm colonisation in laboratory conditions. The tested plastics were fragments in sizes 1 x 10 x 10 mm and 1 x 20 x 10 mm, as well as spheres with a diameter of 5 mm. These experiments will have significant implications for the description of the settling velocity of plastics which will aid in informing future field campaigns aimed at quantifying riverine plastic transport.

How to cite: Lofty, J., Ouro, P., and Wilson, C.: A plastic tipping point: The influence of biofouling on the settling orientation of plastics., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-131, https://doi.org/10.5194/egusphere-egu24-131, 2024.