EGU24-13386, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13386
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-model simulation of the radionuclide transfer in the Yellow Sea as a result of hypothetical atmospheric deposition

Kyeong Ok Kim1, Roman Bezhenar2, Ivan Kovalets2, Igor Brovchenko2, Vladimir Maderich2, and Kyonghwan Kwon3
Kyeong Ok Kim et al.
  • 1Korea Institute of Ocean Science and Technology, Ocean Circulation and Climate Research Department, Busan, Korea, Republic of (kokim@kiost.ac.kr)
  • 2Institute of Mathematical Machine and System Problems, Kyiv, Ukraine
  • 3Oceanic Consulting and Trading, Gangneung, Republic of Korea

After accidents at the Chornobyl NPP in 1986 and Fukushima Daiichi NPP in 2011, it became clear that there are many causes that can lead to a nuclear accident, including techno-genic and natural disasters. There is a danger of damage to the Zaporizhzhia NPP, with the subsequent release of radioactivity into the environment, as a result of the Russian invasion of Ukraine. The coastline of the Yellow Sea and East China Sea(YSECS) is a place where 9 NPPs are in operation in China and Korea. Since they are semi-enclosed seas with a very high density of population, any potential nuclear accident in the region can significantly contaminate the marine environment and affect the health of many people.

In the current study, a set of numerical models for the first time was applied to simulate the spreading of radionuclides in the environment as a result of the hypothetical accident at the Haiyang Nuclear Power Plant in China. The scenario of accidental release with containment-bypass was considered in this work. The atmospheric transport and deposition of radionuclides on the sea surface were simulated by the FLEXPART model. The set of 1450 dispersion scenarios following hypothetical accidental releases with different start dates were calculated for the next 120 h after release start, thus covering meteorological conditions from 1 Mar 2020 to 28 Feb 2021. Scenario with the heaviest deposition densities on the Yellow Sea was selected. These results were used as a source term for three different marine dispersion model simulating the transfer and fate of Cs-137 in YSECS: the grid-based Eulerian model THREETOX, Lagrangian radionuclide transport model and compartment model POSEIDON-R. Such approach emulates the application of various models with their own settings in the event of an unexpected accidental release, similar to the Fukushima accident. For THREETOX model setup, 3D current velocities with 30 vertical layers were extracted from the KIOST-MOM model, results of which are monthly averaged and cover North Pacific. The Lagrangian radionuclide transport model used regional currents and suspended sediments concentrations from circulation model adopted for the YSECS taking into account tides and multi-fractional sediments. These two models were applied for emergency and post-emergency phases for the period from half a year to one year after deposition. The POSEIDON-R model already had a system of boxes for the North-Western Pacific covering the YSECS, East/Japan Sea and Eastern coastal area of Japan. It was applied for a long-term assessment of several decades. Obtained concentrations of Cs-137 in water, bottom sediments and partly in marine organisms were compared and the differences were analysed. Application of three marine dispersion models provides the possible ranges of radionuclide concentrations on the one hand and increases the reliability of results on the other.

How to cite: Kim, K. O., Bezhenar, R., Kovalets, I., Brovchenko, I., Maderich, V., and Kwon, K.: Multi-model simulation of the radionuclide transfer in the Yellow Sea as a result of hypothetical atmospheric deposition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13386, https://doi.org/10.5194/egusphere-egu24-13386, 2024.