EGU24-13389, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13389
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Topographically-generated near-internal waves as a response to winds over the ocean surface

Ashley Barnes
Ashley Barnes
  • Australian National University, Research School of Earth Sciences, Australia (ashley.barnes@anu.edu.au)

Internal waves propagate on the ocean stratification and carry energy and momentum through the ocean interior. The two most significant sources of these waves in the ocean are surface winds and oscillatory tidal flow across topography. We propose a hybrid of these two mechanisms, in which wind induced oscillations of sea surface and isopycnal heights are rapidly communicated to the seafloor via hydrostatic pressure. In the presence of topography, the resulting oscillatory bottom velocity may then generate internal waves in a similar manner to the barotropic tide. We investigate this mechanism in an idealised numerical isopycnal model of a storm passing over a mid ocean ridge, and perform several perturbation experiments in which ocean and wind properties are varied. Bottom-generated internal waves are identified propagating away from the ridge in the wake of the storm. Estimates of the total wave energy suggest that in the right circumstances these waves could be a significant source of internal wave energy, with a local wind work to wave energy conversion rate of up to 50% of the corresponding conversion to surface generated near-inertial waves in our domain. Our results suggest a need for further investigation in less idealised scenarios to more precisely quantity this novel mechanism of deep ocean wave generation, and how it may affect abyssal mixing. 

How to cite: Barnes, A.: Topographically-generated near-internal waves as a response to winds over the ocean surface, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13389, https://doi.org/10.5194/egusphere-egu24-13389, 2024.