EGU24-13428, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13428
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interpretation of low-frequency DAS data acquired during hydraulic fracturing treatments based on geomechanical models

Mirko van der Baan1 and Ana Ortega Perez1,2
Mirko van der Baan and Ana Ortega Perez
  • 1University of Alberta, Edmonton, Alberta, Canada (mirko.vanderbaan@ualberta.ca)
  • 2Silixa, Calgary, Alberta, Canada (ortegape@ualberta.ca)

Distributed Acoustic Sensing (DAS) is a technology that enables continuous, realtime measurements along the entire length of a fiber optic cable. The low-frequency band of DAS can be used to analyze hydraulic fracture geometry and growth. In this study, the low-frequency strain waterfall plots with their corresponding pumping curves were analyzed to obtain information on fracture azimuth, propagation speed, number of fractures created in each stage, and re-stimulation of pre-existing fractures. We also use a simple geomechanical model, described in full detail in Ortega Perez and Van der Baan (Geophysics, 2024), to predict fracture growth rates while accounting for changes in treatment parameters. As expected, the hydraulic fractures principally propagate perpendicular to the treated well, that is, parallel to the direction of maximum horizontal stress. During many stages, multiple frac hits are visible indicating that multiple parallel fractures are created and/or re-opened. Secondary fractures deviate towards the heel of the well, likely due to the cumulative stress shadow caused by previous and current stages. The presence of heart-shaped tips reveals that some stress and/or material barrier is overcome by the hydraulic fracture. The lobes of the heart are best explained by the shear stresses at 45-degree angles from the fracture tip instead of the tensile stresses directly ahead of the tip. Antennas ahead of the fracture hits indicate the re-opening of pre-existing fractures. Tails in the waterfall plots provide information on the continued opening, closing, and interaction of the hydraulic fractures within the fracture domain and stage domain corridors. Analysis of the low-frequency DAS plots thus provides in-depth insights into the rock deformation and rock-fluid interaction processes occurring close to the observation well.

How to cite: van der Baan, M. and Ortega Perez, A.: Interpretation of low-frequency DAS data acquired during hydraulic fracturing treatments based on geomechanical models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13428, https://doi.org/10.5194/egusphere-egu24-13428, 2024.