EGU24-13433, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13433
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The effect of pressure drop and fluid expansion during rock fracturing by dynamic unloading

Michele Fondriest1, Fabio Arzilli2, Benoit Cordonnier3, Michael Carroll2, and Mai-Linh Doan4
Michele Fondriest et al.
  • 1University of Padova, Department of Geosciences, Italy
  • 2Scuola di Scienze e Tecnologie – Sezioni di Geologia, Università di Camerino, Camerino, Italy
  • 3Eurpoean Synchtron Radiation Facility (ESRF), Grenoble, France
  • 4Institut des Sciences de la Terre (ISTerre), Grenoble, France

The propagation of earthquake fault ruptures in the crust involve the generation of unloading stress pulses sufficiently large to induce dynamic failure of water-saturated rocks under tensional stresses and hydrofracturing. Similar processes are also activated during underground rock mass excavation activities in mines and tunnels. The current knowledge about rock fracturing via dynamic unloading is mainly limited to empirical records and numerical simulations, while there is a general paucity of experimental studies, due to difficulties in reproducing large instantaneous decompressions on rock samples using standard triaxial rigs. Until now rapid decompression and fracturing of large rock samples in dry conditions was reported only by using an unconventional gas-confined vessel.

Here, we report rock-fracture results for newly conceived rock decompression experiments, completed through the innovative use of a “cold-seal pressure vessel” (CSPV) apparatus which is routinely employed in experimental petrology. We applied instantaneous large decompressions on water-saturated rock samples equilibrated at high confinement (up to 200 MPa) and temperatures (up to 540°C). The tested rock samples were fine-grained Westerly granite, coarse-grained tonalite and micritic limestone. During the decompressions the rock samples hydrofractured due to the confinement dropping faster than the pore pressure within the rock. Porosity measurements, SEM imaging and X-ray µCT acquired before and after the tests suggest that the magnitude of dynamic fracturing not only positively correlates with the pressure drops but it mostly increases when the decompression is associated to a phase change of the pore water (e.g. supercritical fluid to subcritical gas) . Water vaporization or degassing imply an instantaneous volume expansion (up to 70 times) which critically enhances dynamic fracture propagation along rock grain boundaries. The induced fractures span from mm-long transgranular cracks to microcracks with submicrometric aperture. Therefore, synchrotron light high-resolution microtomography (final pixel resolution of 0.3 µm) was employed to fully resolve and quantify the 3D fracture networks of these deformed rock samples. Such unique dataset allowed us to determine at different scales the fracture intensity, aperture and connectivity of the dynamically induced fracture networks and to assess the key contribution of pore-water physical state changes on the initial stages of dynamic fracturing in rocks at crustal conditions. Such results will contribute to close a current knowledge gap in rock mechanics.

How to cite: Fondriest, M., Arzilli, F., Cordonnier, B., Carroll, M., and Doan, M.-L.: The effect of pressure drop and fluid expansion during rock fracturing by dynamic unloading, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13433, https://doi.org/10.5194/egusphere-egu24-13433, 2024.