EGU24-1358, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1358
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Homogenization of observed surface wind speed based on geostrophic wind theory over China from 1970 to 2017

Zhengtai Zhang
Zhengtai Zhang
  • Lanzhou University, College of Atmospheric Sciences, China (zhangzt@lzu.edu.cn)

The observed surface wind speed (SWS) over China has declined in the past four decades, and recently, the trend has reversed, which is known as SWS stilling and recovery. The observed SWS is vulnerable to changes in nonclimatic factors, i.e., inhomogeneity. Unfortunately, most of the existing studies on the long-term trend of SWS were based on raw datasets without homogenization. In this study, by means of geostrophic wind speed and penalized maximal T test, we conduct a systematic homogeneity test and exploration of the homogenization impact for SWS at over 2,000 stations in China from 1970 to 2017. The results show that the inhomogeneity in the observed SWS over China is detectable at 59% of national weather stations. The breakpoint years are mainly concentrated in the late 1970s, mid-1990s and early 2000s. Overall, 18% of breakpoints are caused by station relocations, and the remaining breakpoints are likely related to anemometer replacement and measurement environment changes that occurred during the mid-1990s and early 2000s. After homogenization, the decreasing trend in SWS during 1970-2017 decreased from -0.15 m/s decade-1 to -0.05 m/s decade-1. The homogenized SWS recovery period advanced from the early 21st century to the early 1990s, which is consistent with the SWS variations, excluding the impact of urbanization around weather stations. The phase change in the Western Hemisphere warm pool (WHWP) might be one of the causes of homogenized SWS recovery.

How to cite: Zhang, Z.: Homogenization of observed surface wind speed based on geostrophic wind theory over China from 1970 to 2017, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1358, https://doi.org/10.5194/egusphere-egu24-1358, 2024.