Slip Behaviors Controlled by Rheological and Frictional Properties of A Two-Phase Mélange in Subduction Shear Zones
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
A rich spectrum of slip behaviors, spanning from aseismic creep (mm/yr) to seismic slip (m/s), has been observed in many subduction zones and some strike-slip faults. Slow earthquakes, intermediate between these two end-member modes, exhibit transitional slip behaviors in fault sections adjacent to the seismogenic zone. Focusing on subduction zones, it is shown that they experience deformation not only along discrete fault planes but also over distributed frictional-viscous shear zones, the latter of which are thought to be responsible for the observed diverse slip behaviors. Here we employ a frictional-viscous mélange model consisting of brittle blocks surrounded by a viscous matrix to investigate its influence on slip behaviors. By varying the mélange's rheological and frictional properties, we observe a diverse range of slip behaviors. We also reproduce the source scaling relations observed in natural faults, including the relation between seismic moment and duration and that between moment magnitude and stress drop. Additionally, we find a close link between the modeled shear zone deformation patterns and the various geological structures observed in natural fault zones. Our study demonstrates that the interaction between the frictional and viscous compositions of the mélange is responsible for the resulting slip behaviors and their transitions under different compositional ratios. These results provide useful clues for constraining the environmental and rheological conditions of different subduction zone sections from the observed slip behaviors.
How to cite: Xie, J., Ding, X., and Xu, S.: Slip Behaviors Controlled by Rheological and Frictional Properties of A Two-Phase Mélange in Subduction Shear Zones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13838, https://doi.org/10.5194/egusphere-egu24-13838, 2024.