Sub-Lithospheric Small-Scale Convection as a Window into the Asthenosphere: Insights from Integrating Models Of Mantle Convection, Grain Size Evolution and Seismic Tomography
- 1Department of Geological Sciences, University of Florida, Gainesville, United States of America (juliane.dannberg@ufl.edu)
- 2Department of Earth Science, University of California, Santa Barbara, United States of America
- 3Earth and Environmental Sciences, Syracuse University, United States of America
Understanding the interaction between oceanic plates and the underlying asthenosphere and its impact on plate thickness is essential for explaining plate motions and mantle convection patterns. While sub-lithospheric small-scale convection provides an explanation for why oceanic plates do not continue to thicken after a certain age, many open questions still surround this process. Here, we link dynamic models of mantle flow, grain-scale processes, seismic imaging, and surface observations to gain new insights into the mechanisms of asthenospheric small-scale convection and its surface expressions.
We have performed a series of high-resolution 3D numerical models of the evolution of oceanic plates and the development of thermal instabilities at their base using the open-source geomodeling software ASPECT. These simulations use an Earth-like rheology that includes coupled diffusion and dislocation creep as well as their interplay with an evolving olivine grain size. Our models quantify how the effective asthenospheric viscosity and the balance between diffusion and dislocation creep affect the morphology and temporal stability of small-scale sub-lithospheric convection, including the age of its onset, the average depth and wavelength of the small-scale convection rolls, and the amplitude of the temperature and grain size anomalies within the rolls.
All of these quantities predicted by the dynamic models can be directly related to both geophysical observables and to surface manifestations such as dynamic topography and heat flux. To accurately compare our model outputs to geophysical data, we convert them to seismic velocity and attenuation using laboratory-derived constitutive relations and taking into account variations in temperature, pressure, grain size, water content and calculated stable melt fraction. We then create synthetic seismic tomography models of different dynamic scenarios and analyze their fit to observations from the Pacific OBS Research into Convecting Asthenosphere (ORCA) experiment. Comparison with both seismic imaging and surface expressions allows us to determine the parameter range in which geodynamic models fit these observations, providing new constraints on the convection patterns and the rheology of the oceanic asthenosphere beneath the Pacific Plate.
How to cite: Dannberg, J., Eilon, Z., Russell, J. B., and Gassmoeller, R.: Sub-Lithospheric Small-Scale Convection as a Window into the Asthenosphere: Insights from Integrating Models Of Mantle Convection, Grain Size Evolution and Seismic Tomography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13895, https://doi.org/10.5194/egusphere-egu24-13895, 2024.