Changes and attribution of natural runoff in the Yellow River over the past 500 years
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China (liuyu@loess.llqg.ac.cn)
The Yellow River (YR) is 5464 km long and the cradle of Chinese civilization. It is also well known for being the most sediment-laden river and having the largest vertical drop over its course. Although the YR accounts for only 3% of China’s water resources, it irrigates 13% of its cropland. Exceptional historical documents have recorded frequent occurrence of YR flooding events that resulted in huge losses of lives and property.
The earliest observational record of YR runoff, beginning in 1919 at the Shanxian gauge station, is too short to study centennial-scale variability. Since the start of the Anthropocene in the 1960s, frequent human activities have resulted in large deviation between observed streamflow. The reconstruction of annual historical natural runoff of the YR is necessary to quantify the amount of anthropogenic YR water consumption in recent decades. Tree rings, with the merits of accurate dating and annual resolution, have been widely used in runoff reconstruction worldwide. In this study, 31 moisture-sensitive tree-ring width chronologies, including 860 trees and 1707 cores, collected within the upper-middle YR basins were used to reconstruct natural runoff for the middle YR course over the period 1492–2013 CE.
The reconstruction provides a record of natural YR runoff variability prior to large-scale human interference. Most of the extreme high/low runoff events in the reconstruction can be verified with historical documents. The lowest YR flow since 1492 CE occurred during 1926–1932 CE and the YR runoff in 1781 is the highest. These two extreme values could be regarded as a benchmark for future judicious planning of water allocation. Since the late 1980s, observed YR runoff has fallen out of its natural range of variability, and there was even no water flow for several months each year in the lower YR course during 1995 to 1998. Especially concerning was that the inherent 11-year and 24-year cycles of YR became disordered following the severe drought event in late 1920s, and eventually disappeared after the 1960s.
Year-to-year variability in YR water consumption by human activities (WCHA) was quantified, which showed good association between crop yields and acreage in Ningxia and Inner Mongolia irrigation regions. Meanwhile, WCHA was strongly negatively correlated with sediment load at Toudaoguai and Shanxian stations, which led to a 58% reduction of sediment load in Toudaoguai (upper reach) and 29% in Shanxian (middle reach).
If human activities continue to intensify, future YR runoff will be further reduced, and this will negatively impact agriculture, human lives, and socioeconomic development in the middle and lower basins of the YR. To reduce the risk of recurring cutoff of streamflow in the YR lower basin, water should be allocated judiciously. Our reconstructed YR natural runoff series are important for future YR water resource management. In addition, our results also provide an important model of how to distinguish and quantify anthropogenic influence from natural variability in global change studies.
How to cite: Liu, Y.: Changes and attribution of natural runoff in the Yellow River over the past 500 years, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13979, https://doi.org/10.5194/egusphere-egu24-13979, 2024.