Hydrokinetic resource assessment for the Canadian Arctic
- Department of Civil Engineering, and Trottier Institute for Sustainability in Engineering and Design, McGill University
Increasing renewable energy development has rekindled interest in hydrokinetic or in-stream river potential for power production using zero head turbines. This is also of interest for remote regions such as the Canadian Arctic where decentralized power production from renewable energy sources is an economically viable option in offsetting the high cost of diesel power production. However, one of the major obstacles is the absence of streamflow data at necessary spatial and temporal scales for these regions. This study estimates the hydrokinetic power potential for current-based systems in the rivers of the Canadian Arctic region, primarily Nunavut and adjoining regions, for the current and near-future periods, based on streamflow estimated using a routing scheme applied to runoff generated by ultra-high-resolution simulations of the Global Environmental Multiscale (GEM) model, for a high emission scenario. GEM simulation for current climate, validated against gridded and station observation data, suggest reasonable performance of the model, particularly streamflow-relevant variables such as precipitation, snow water equivalent, soil and air temperatures given improved representation of processes and surface heterogeneity due to the higher resolution. This is also reflected in the comparison of simulated streamflow characteristics with available observations from HYDAT.
Hydrokinetic power estimates over the study region show patterns similar to those of flow velocity as expected, with maximum hydropower being noted during the summer season for the central regions of Nunavut. Since the near-future period spans only till 2040, the changes in flow velocity and hydrokinetic power are minimal with an overall decrease of 2.5% for the southern and western regions of Nunavut and an increase of 2.5 to 5 % for some of the northernmost regions of Nunavut. The study further identifies ideal locations for the installation of hydrokinetic turbines for energy extraction, which require daily flow velocities above pre-defined thresholds, by considering indirectly also the impact of river ice on flow velocities. The results of this study provide useful information on hydrokinetic resources for the high-altitude regions of Canada by introducing a science-based approach and serve as a foundation for additional detailed investigations for site-specific studies to support the implementation of hydrokinetic energy conversion systems.
How to cite: Bhattacharjee, K., Sushama, L., and Cousineau, J.: Hydrokinetic resource assessment for the Canadian Arctic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14169, https://doi.org/10.5194/egusphere-egu24-14169, 2024.