EGU24-14238, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14238
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Polar Geosonif-i: a python-based comprehensive web tool for geo-data sonification in polar regions

Hiroto Nagai
Hiroto Nagai
  • Department of Geography, Faculty of Geo-Environmental Science, Rissho University, Kumagaya, Saitama, Japan (hirotonagai1984@gmail.com)

Over the last few decades, there has been a remarkable surge in both the quantity and diversity of Earth observation data. Strides in data-format standardization and cloud-processing environments have significantly enhanced the accessibility of specialized analyses. However, the current accessibility to access, process, and analyze Earth observation data is primarily confined to researchers, students in the fields of Earth science, related disciplines, and a limited number of science/geography educators. Given the existing circumstances, there is no fundamental anticipation of a substantial increase in the user base in the future. The stagnation in user engagement can be viewed as a bottleneck in the effective utilization of data.

To expand the societal impact of Earth observation data across a broader spectrum of fields, innovative proposals for utilization and exploration of user domains are imperative. This study aims to assess the potential for new data utilization in the field of arts. As a tangible example, a web tool has been developed that generates music data directly from Earth observation data, providing a comprehensive solution. This tool facilitates the prototyping of musical compositions, enabling the evaluation and discussion of potential applications of Earth science data in the realm of music through listening experiences.

Initially, the author utilized Google Earth Engine's Python API to access well-known Earth observational data sets such as ERA5, MODIS, and ArcticDEM. Imagining polar stereographic coordinates as two vinyl records, the author sampled physical quantities from latitude 60° followed to higher latitudes as if a record needle tracing the disc. The sampled values in the longitude direction are compiled into a table, and the author converts the table to a MIDI file using the Python module "Mido". Throughout this process, the author implements normalization and specify parameters, including the lowest note, range, and scale, for the musical representation. Playing the obtained MIDI file in a Digital Audio Workstation (DAW), Logic Pro, the author selected tones suitable for expression and conducted detailed arrangement and mixing during playback.

The result is a music piece named "Polar Stereographony", following the EDM style and employing a natural scale, which denotes a generally accessible finish. As the latitude gradually increases, tracing terrains and similar factors, a unique variation reminiscent of minimal music occurs, where musical patterns subtly change. The automatic generation of such fluctuating musical patterns allows for the creation of almost infinite new phrases by altering physical quantities and pitch ranges.

In music creation using the tool developed in this study, unintended sonic forms, yet those with a scientific foundation, can be obtained almost infinitely. As a method to achieve novel sounds, it introduces musicians to a new form of music creation. This signifies a transition from an era where only Earth scientists could utilize data to an era where artists can also freely leverage data. As an exemplary illustration of the societal contribution of Earth observation results inaccessible to scientists, this web tool is named "Polar Geosonif-i" and will be publicly available on the web for universal use.

How to cite: Nagai, H.: Polar Geosonif-i: a python-based comprehensive web tool for geo-data sonification in polar regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14238, https://doi.org/10.5194/egusphere-egu24-14238, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 15 Apr 2024, no comments