EGU24-14247, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14247
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effects of Rising CO2 Concentration on Global Ozone Air Quality 

Kylie W. K. Cheng1, Amos P. K. Tai1,2, and Anthony Y. H. Wong3
Kylie W. K. Cheng et al.
  • 1Earth System Science Programme and Graduate Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong
  • 2Institute of Environment, Energy and Sustainability and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
  • 3Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

Surface ozone is a major air pollutant that harms not only human health but also crop and vegetation productivity. The continuously rising atmospheric CO2concentration can affect surface ozone levels through various vegetation-mediated ecophysiological pathways. These pathways include higher leaf densityfollowing CO2 fertilization, which can lead to increased biogenic volatile organic compound (BVOC) emissions and dry deposition, inhibition of BVOC emissions due to competitive biochemical effects in leaves, and lower stomatal conductance resulting in lower dry deposition. In this study, we implemented an ecophysiology module that explicitly links the computation of dry deposition velocity and isoprene emission to photosynthesis calculation in the GEOS-Chem global 3-D chemical transport model, and conducted model experiments to simulate the effects of rising CO2 levels on surface ozone pollution via CO2 fertilization, isoprene inhibition and stomatal closure under an atmospheric CO2 level projected by Representative Concentration Pathway (RCP) 8.5 scenarios in 2050, with 2010 as the base year for comparison. The effects of rising CO2 on enhancement in leaf area index (LAI) were simulated separately using a land surface model (Community Land Model, CLM). The simulated results indicate that the CO2-induced ecophysiological effects depend largely on the environmental regime and plant traits. The combination of all the CO2-induced ecophysiological responses lead to –3 to +5 ppbv of changes in surface ozone. While for the simulated results with the ecophysiology module implemented, the effects of all ecophysiological pathways result in an overall decrease in ozone levels by –0.047% in global tropospheric ozone burden, which corresponds to –2 to +2 ppbv of changes in surface ozone. In regions with low-NOx environment and dense vegetation, the effect of CO2 fertilization outweighs that of isoprene inhibition and stomatal closure, giving an overall decrease in ozone. In high-NOx environment like North America and Europe, the effect of isoprene inhibition offsets that of CO2 fertilization or stomatal closure. By comparing with the results, the impact of rising CO2 on ozone levels is found to beoverall modest due to the counteracting effects of different pathways, but can be regionally important for specific pathways, underscoring the necessity of comprehensively analysing the interplay between the atmosphere and biosphere when examining the influence of increasing CO2 on global atmospheric chemistry. 

How to cite: Cheng, K. W. K., Tai, A. P. K., and Wong, A. Y. H.: Effects of Rising CO2 Concentration on Global Ozone Air Quality , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14247, https://doi.org/10.5194/egusphere-egu24-14247, 2024.