EGU24-14330, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14330
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Immobilization of radioactive Th by coprecipitation with lead apatites

Maciej Manecki, Patrycja Wrona, Aleksandra Brzoska, and Kacper Staszel
Maciej Manecki et al.
  • AGH University of Kraków, Department of Mineralogy, Petrography and Geochemistry, Kraków, Poland (gpmmanec@cyf-kr.edu.pl)

There is a constant search for materials that could be used as geochemical barriers and fillers for radioactive waste storage containers. One of effective methods of immobilizing toxic elements is their precipitation in the form of sparingly soluble crystalline phases. The purpose of this study was to test the effectiveness of co-precipitation of Th from aqueous solutions in the form of crystalline lead phosphates. Such phases have high stability and low solubility and the presence of Pb has an additional effect on reducing the radiation.

Three sets of experiments were carried out by adding reagents into a solution containing non-radioactive Th at a concentration of 400 ppm:

(A) a solution containing PO43- ions (at a concentration of 1 g/L);

(B) a solution containing Pb2+ and a solution containing PO43- ions (at concentrations of 3.5 g/L and 1 g/L, respectively) added dropwise simultaneously;

(C) solutions containing Pb2+, PO43-, and Cl- ions (at concentrations of 3.5 g/L, 1.0 g/L, and 0.12 g/L, respectively) added dropwise simultaneously.

All experiments were repeated at pH = 3, 5 and 7. No reaction occurred in experiment (A), while in experiments (B) and (C) the solid phases crystallized, and the Th concentration dropped from 400 to about 0.05 ppm. In the absence of Cl (experiment B), the reaction at pH=3 led to the formation of "phosphoschultenite" PbHPO4 while at pH = 5 and 7 Th-bearing hydroxylpyromorphite Pb5(PO4)3OH was formed. In the presence of Cl ions (experiments C), Th-bearing pyromorphite Pb5(PO4)3Cl was formed over the entire pH range. Th was removed from solution by coprecipitation with Pb and incorporation of Th into lead phosphate structure.

The results showed that Pb must be present for Th to be effectively immobilized from solution in the form of phosphate phases. The presence of Cl is not as important as the presence of Pb in terms of removal efficiency, but it may be crucial for the long-term stability of the precipitated phases, since Pb5(PO4)3Cl has higher stability and lower solubility than Pb5(PO4)3OH. These findings pave the way for development of potential innovative techniques for immobilizing Th from waste and contaminated solutions, which could have implications for the safety and long-term viability of various nuclear waste disposal programs. This research was funded by National Science Center research grant no. 2021/43/O/ST10/01282.

How to cite: Manecki, M., Wrona, P., Brzoska, A., and Staszel, K.: Immobilization of radioactive Th by coprecipitation with lead apatites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14330, https://doi.org/10.5194/egusphere-egu24-14330, 2024.