EGU24-14566, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14566
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Frictional behavior of chlorite in large-displacement experiments under hydrothermal conditions

Weifeng Qin1, Lu Yao1, Tongbin Shao1, Wei Feng1,2, Jianye Chen1, and Shengli Ma1
Weifeng Qin et al.
  • 1State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China
  • 2Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy

The frictional properties of faults are primarily controlled by their mineral composition, as well as ambient and deformation conditions, such as temperature, pore fluid, normal stress, and slip displacement. While many studies have been conducted to decipher how temperature and pore fluid may affect the frictional behavior of faults, less attention has been paid to the slip displacement effects, especially under hydrothermal conditions. By employing a rotary shear apparatus equipped with an externally-heated hydrothermal pressure vessel, we conducted large-displacement (up to 521 mm) friction experiments on chlorite under temperature (T) of 25 to 400℃ and pore water pressure (Pp) of 30MPa. The imposed effective normal stresses were 200 MPa and the slip rates ranged from 0.4 to 10 μm/s. The experiments unveiled significant slip strengthening in chlorite within the temperature range of 25 to 400 °C. Moreover, with increasing temperatures, there was an overall increasing trend in both the rate of slip strengthening and the ultimate frictional strength. For example, under T = 25 °C, the friction coefficients at displacements of 5, 90, and 521 mm were 0.33, 0.49, and 0.59, respectively, in contrast to 0.46, 0.79, and 0.88, respectively, at the same three displacements under T =400 °C. Under all the temperature and displacement conditions, chlorite exhibited velocity strengthening behavior without discernible temperature dependence, although the velocity-dependence parameter (a-b) increased with slip displacement. Microstructural analysis revealed that, the entire layer of the chlorite gouge experienced pervasive and intense shear deformation after slip of 521 mm, with extremely remarkable grain-size reduction. The thermogravimetrical and FTIR data of the deformed chlorite samples, together with the microstructural data, suggest that the dehydroxylation and the distortion of crystal structure of chlorite might occur during the friction experiments conducted at T ≥ 200 °C. Such changes may explain the more pronounced slip strengthening of chlorite with increasing temperatures towards 400 °C. This explanation can be further demonstrated by a comparative experiment conducted under varying temperatures (400°C for the first 100 mm of slip, followed by 25°C for the rest of 100 mm slip), wherein the friction coefficient at T = 25°C during the latter stage of slip remains as high as that at T = 400°C. These findings highlight the importance of slip displacement in controlling the frictional strength and its variations of chlorite-bearing faults at depths, and have profound implications for understanding the fault slip behaviors and earthquake mechanisms in subduction zones.

How to cite: Qin, W., Yao, L., Shao, T., Feng, W., Chen, J., and Ma, S.: Frictional behavior of chlorite in large-displacement experiments under hydrothermal conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14566, https://doi.org/10.5194/egusphere-egu24-14566, 2024.