EGU24-14614, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14614
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geochemical and microbiological signatures in the Vega Verde carbonate system, Botijuela, Puna Argentina.

Tatiana Stepanenko, Guido Alonso, Anelize Bahniuk, and Leonardo Cury
Tatiana Stepanenko et al.
  • Instituto LAMIR, Universidade Federal do Paraná, Geology, Curitiba, Brazil (stepanenko@ufpr.br)

      Botijuela travertine system is located at the western edge of the Salar de Antofalla at 3433 meters above sea level, the area shows several hot springs still active and several fossilized carbonate deposits. One of the main outcrops of this area is Vega Verde, which develops in a north-south direction where the carbonate deposits start from a vent and reach the Salar de Antofalla basin. In this place, it was possible to observe the development of several microbial ecosystems: non-lithified and lithified microbial mats in the closest area to the vent, as well as cyanobacterial biofilms and lithified stromatolites in the mixing zone between freshwater and thalassic water. In this work, we present the geochemical and mineralogical characterization of these microbial ecosystems. Mineralogically, the lithified ecosystems were composed mainly of calcite, and a less extended Mg-bearing calcite, aragonite, gypsum, and halite. Stable Isotopes C & O analyses showed that the samples from the vent presented an isotopic signature related to hydrothermal origin with δ13C (2,05 – 7,82) and δ18O (-6,59- -9,77) values. While the stromatolite from the Salar de Antofalla (in the mixing zone) showed high δ18O (0,8-1,12) and δ13C (7,63-13,26) values, which suggests that the evaporation process is the main fractionation force.   Although is considered that the main processes driving the travertine mineral precipitation are degassing and evaporation, petrological and SEM analyses showed that microbial activity appears to be contributing to the sedimentological textures of Vega Verde samples rocks. Moreover, the mineral morphologies and carbonate growth structures found in the SEM rock samples were also found in the in vitro carbonate precipitation experiments, but exclusively when microbial mats were present, and not in the negative control. These results suggest a strong influence of hydrothermal flows, evaporation process, and microbiological mediation during the Vega Verde carbonate systems formation.

How to cite: Stepanenko, T., Alonso, G., Bahniuk, A., and Cury, L.: Geochemical and microbiological signatures in the Vega Verde carbonate system, Botijuela, Puna Argentina., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14614, https://doi.org/10.5194/egusphere-egu24-14614, 2024.