Using current 3D point clouds as a tool to infer on past geomorphological processes
- 1Geodesy and Geoinformation, TU WIen, Vienna, Austria (reuma.arav@geo.tuwien.ac.at)
- 2Dept. of Mapping and Geoinfmation, Technion - Israel Institue of Technology, Haifa, Israel (filin@technion.ac.il)
- 3Geological Survey of Israel, Jerusalem, Israel (yavni@gsi.gov.il)
Examining deposition and erosion dynamics during the late Pleistocene and Holocene is crucial for gaining insights into soil development, erosion, and climate fluctuations. This urgency intensifies as arable lands face escalating degradation rates, particularly in arid and semi-arid environments. Nevertheless, as the destructive nature of erosional processes allows only for short-term studies, long-term processes in these regions are insufficiently investigated. In that respect, the ancient agricultural installations in the arid Southern Levant offer distinctive and undisturbed evidence of long-term land dynamics. Constructed on a late Pleistocene fluvial-loess section during the 3rd-4th CE and abandoned after 600-700 years, these installations record sediment deposition, soil formation, and erosion processes. The challenge is to trace and quantify these processes based on their current state. In this presentation, we demonstrate how the use of 3D point cloud data enables us to follow past geomorphological processes and reconstruct trends and rates. Utilizing data gathered in the immediate vicinity of the UNESCO World Heritage Site of Avdat (Israel), we illustrate how these point clouds comprehensively document the history of soil dynamics in the region. This encompasses the initial erosion phase, subsequent soil aggradation processes resulting from anthropogenic interruption, and the ongoing reinstated erosion. The unique setting, which uncovers the different fluvial sections, together with the detailed 3D documentation of the site, allows us to develop means for the reconstruction of the natural environment in each of the erosion/siltation stages. Therefore, by utilizing the obtained data, we can recreate the site during its developmental stages till the present day. Furthermore, we utilize terrestrial laser scan data sequence acquired in the past decade (2012-2022) to compute current erosion rates. These are then used to determine past rates, enabling inferences about the climatic conditions prevalent in the region over the last millennium. The in-depth examination of these installations provides valuable insights into approaches for soil conservation, sustainable desert living, and strategies to safeguard world-heritage sites subjected to soil erosion. As the global imperative to address soil erosion intensifies, this case study gains heightened relevance.
How to cite: Arav, R., Filin, S., and Avni, Y.: Using current 3D point clouds as a tool to infer on past geomorphological processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14680, https://doi.org/10.5194/egusphere-egu24-14680, 2024.