Drought Changes Growing Season Length and Vegetation Productivity
- 1NC State University, Forestry & Environmental Resources, (jmgray2@ncsu.edu)
- 2Boston University
- 3ESA
- 4Center for Geospatial Analytics
Meteorological droughts are increasing in intensity, frequency, and duration due to climate change. These events may have substantial impacts on vegetation productivity that influence the global carbon balance. Effects vary considerably, however, with the intensity of the drought as well as local abiotic and biotic conditions such as vegetation type, soil type, and the timing of the drought. Productivity is primarily reduced because droughts decrease the efficiency with which plants can convert atmospheric CO2 into carbohydrates, largely because of stomatal closure when energy is not limiting. However, another aspect by which droughts can reduce productivity is by shortening the growing season length (GSL). GSL reduction may be particularly pronounced in vegetation communities already sensitive to precipitation variability, in particular, short-rooted grassland and croplands ecosystems. Here, we use evidence from satellite observations of ecosystem activity, meteorological measurements, and data from eddy-covariance flux towers to reveal the impact of several large-scale meteorological droughts on vegetation productivity on natural and managed ecosystems. In particular, we show that the timing of the drought is important, with late droughts being particularly diminishing to productivity. We also demonstrate that while plant physiological responses to drought dominate the reduction in productivity, the diminishment of GSL plays an underappreciated role. These results have wide implications for the future carbon balance under a changing climate, and suggests that ecosystem models could better explain productivity by incorporating the effects of droughts on GSL.
How to cite: Gray, J., Choi, E., Friedl, M., and Griffiths, P.: Drought Changes Growing Season Length and Vegetation Productivity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14774, https://doi.org/10.5194/egusphere-egu24-14774, 2024.