EGU24-14837, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14837
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Spatiotemporal variations of 137Cs and 90Sr in the global ocean based on the historical data

Yayoi Inomata1 and Daisuke Tsumune2
Yayoi Inomata and Daisuke Tsumune
  • 1Kanazawa University, Institute of Nature and Environmental Technology, Kanazawa, Japan (yinomata@se.kanazawa-u.ac.jp)
  • 2University of Tsukuba, Center for Research in Radiation, Isotopes and Earth System Sciences, Japan (tsumune.daisuke.gw@u.tsukuba.ac.jp)

The anthropogenic radionuclides such as caesium-137 (137Cs), strontium-90 (90Sr), 3H, 14C, and plutonium (Pu) were released into the global ocean as results with large scale weapon tests in the late 1950s and early 1960s. Because these anthropogenic radionuclides have been still existed in the ocean, it is necessary to investigate the behavior of these anthropogenic radionuclides due to investigate the effects of human health. In this study, the spatiotemporal variations in the 137Cs and 90Sr activity concentrations in global ocean surface seawater from 1956 to 2021 using the HAMGlobal2021: Historical Artificial radioactivity database in Marine environment, Global integrated version 2021. The global ocean was divided into 37 boxes. The 0.5-yr average value of 90Sr in the northern North Atlantic Ocean and its marginal sea, decreased exponentially in 1970–2010, just before the F1NPS accident. Estimated apparent half residence time of 137Cs and 90Sr ranged from 4.1-34.1 years and 3.6-25.2 years, respectively. Considering that longer Tap occurs larger inflow and shorter Tap occurs larger outflows/smaller inflow of radionuclide from the upstream region, 137Cs and 90Sr were inflowed into the Eastern China Sea from the subtropical western North Pacific Ocean. Inflow of 90Sr into the Sea of Japan from the Eastern China Sea were relatively smaller than those of 137Cs. Although 90Sr were decreased exponentially, these trends tended to be larger than those of 137Cs, which was investigated by our previous study (Inomata and Aoyama, 2023). This might be caused by the different behavior of 90Sr and 137Cs such as particulate form for 90Sr in the seawater.

 

Keywords: 90Sr, 137Cs, Database, surface seawater, global ocean

Reference: Inomata and Aoyama, Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer. Earth Syst. Sci. Data, 15, 1969–2007, 2023.

How to cite: Inomata, Y. and Tsumune, D.: Spatiotemporal variations of 137Cs and 90Sr in the global ocean based on the historical data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14837, https://doi.org/10.5194/egusphere-egu24-14837, 2024.