EGU24-14882, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14882
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of marine productivity on atmospheric pCO2 during the Last Glacial Maximum: a model-data comparison

Pauline Depuydt1,2, Stéphanie Duchamp-Alphonse1, Nathaelle Bouttes2, Chiara Guarnieri1, Alice Karsenti1, Ji-Woong Yang2, Jean-Yves Peterschmitt2, and Amaëlle Landais2
Pauline Depuydt et al.
  • 1Géosciences Paris-Saclay, Université Paris Saclay, Orsay, France
  • 2Laboratoire des Sciences du Climat et de l’Environnement/Institut Pierre-Simon Laplace, Université Paris Saclay/CEA/CNRS/UVSQ, Gif-sur-Yvette, France

Measurements of the air trapped in Antarctic ice cores reveal that atmospheric CO2 concentration (pCO2) during the Last Glacial Maximum (LGM) was about 80 ppmv lower than that recorded during the current Holocene interglacial (Bereiter et al., 2015). Studies also show a strong link between pCO2, ice volume and Antarctic temperature, suggesting pCO2 as a forcing or amplifying factor behind glacial/interglacial cycles (Petit et al., 1999; Parrenin et al., 2013). Despite such importance in the global climate changes, mechanisms behind rapid variations in pre-anthropic pCO2 remain elusive. Numerical models emphasized the crucial role of exported marine productivity Pexp, (namely, the Soft Tissue Pump) in such changes. In particular, they feature marine productivity patterns from the Southern Ocean and show that a decrease in Pexp in the Sub-Antarctic zone, linked to a reduction in iron inputs from aeolian dusts, could have increased pCO2 by 20 to 50 ppmv (Köhler and Fischer, 2006; Martínez-Garcia et al., 2009; Lambert et al., 2012). However, these studies are usually compared to proxy data from the Atlantic sector of the Subantarctic Zone i.e., an area under the direct influence of wind fields that makes it possible to test the “Fe-hypothesis” (Martin et al., 1990) but that is not necessarily representative of the entire ocean (e.g. Lambert et al., 2015). Due to a lack of recent Pexp data compilation but also of direct comparisons with model outputs integrating marine biogeochemistry­­, it remains difficult to understand the role marine biological productivity exerted on the carbon cycle and more specifically on the low pCO2 during the LGM.

The aim of this study is to explore Pexp patterns during the LGM compared to the pre-industrial Holocene and understand the mechanisms driving their global changes, in order to try and estimate the contribution of marine productivity to the pCO2 signalbased on (i) a new compilation of Pexp proxy data using the strategy previously proposed by Kohfeld et al. (2005) after Bopp et al., (2003), and (ii) a comparison of these data to outputs from the iLOVECLIM intermediate complexity.

Proxy data show that Pexp is generally higher during the LGM compared to the pre-industrial Holocene. This is particularly the case in the sub-Antarctic and sub-Arctic areas, in the equatorial Atlantic Ocean and in coastal upwelling settings i.e., regions that usually witness higher nutrient content due to revigorated ocean circulation and/or intensified surface winds. Simulations generally confirm such features except from the coastal upwelling and the Southern Ocean, due to a lack of spatial resolution and of aeolian inputs in the model, respectively. However, preliminary results from sensitivity tests show (i) net marine productivity fronts around ~40°N and 45°S due to extended sea ice cover and reduced global temperature, (ii) a decreased Pexp in the Pacific Ocean due to an overall thermohaline circulation slow down and (iii) an increase of Pexp in areas where fertilization by iron-rich dusts is expected (Lambert et al., 2021).

How to cite: Depuydt, P., Duchamp-Alphonse, S., Bouttes, N., Guarnieri, C., Karsenti, A., Yang, J.-W., Peterschmitt, J.-Y., and Landais, A.: Impact of marine productivity on atmospheric pCO2 during the Last Glacial Maximum: a model-data comparison, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14882, https://doi.org/10.5194/egusphere-egu24-14882, 2024.