EGU24-14903, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14903
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Relocations of earthquake hypocenters in and around the source area of the 2024 Mw 7.5 Noto Peninsula earthquake, Japan, by Bayesian inference

Takahiro Shiina, Haruo Horikawa, and Kazutoshi Imanishi
Takahiro Shiina et al.
  • National Institute of Advanced Industrial Science and Technology, Geological Survey of Japan, Tsukuba, Japan (taka.shiina@aist.go.jp)

A large crustal earthquake (Mw=7.5) struck the Noto Peninsula, central Japan, at 16:10 (JST = UT + 9 hours) on New Year's Day, 2024. The main-shock rupture extended ~150 km in length, which covered the source regions of intense swarm activity in the northeastern tip of the peninsula [Amezawa et al., 2023] as well as the previous large crustal earthquakes such as the 2007 (Mw=6.7) and 2023 (Mw=6.3) events. The aftershock distribution of the 2024 event provides fundamental information for understanding the rapture process of the main shock and seismotectonics in the Noto peninsula. Therefore, we relocated the earthquake hypocenters that occurred immediately after the 2024 event by considering the three-dimensional velocity structure [Matsubara et al., 2022]. In the relocation, we applied the method proposed by Shiina and Kano [2022] to the arrival time data on the earthquake catalog compiled by the Japan Meteorological Agency. The applied method utilized the Markov Chain Monte Carlo technique, allowing us to evaluate uncertainty in hypocenter locations. Thus, we can discuss the distributions of the crustal earthquakes in and around the source area of the 2024 event, taking account of the spatial variations in uncertainty in the hypocenters. For example, some aftershocks occurred offshore, indicating that estimation accuracy in that area may get worse due to limited station coverage compared with the inland area. As the result of the relocation considering the three-dimensional structure, the depth of these offshore events was shifted about 5 km shallower. These hypocenters suggested that the aftershocks of the 2024 event occurred mainly between the ground surface and the depth of 15 km.

How to cite: Shiina, T., Horikawa, H., and Imanishi, K.: Relocations of earthquake hypocenters in and around the source area of the 2024 Mw 7.5 Noto Peninsula earthquake, Japan, by Bayesian inference, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14903, https://doi.org/10.5194/egusphere-egu24-14903, 2024.