EGU24-14935, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14935
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Climate of the eastern Mediterranean and Middle East in the 6th century CE with COSMO-CLM 

Eva Hartmann1, Elena Xoplaki1,2, and Sebastian Wagner3
Eva Hartmann et al.
  • 1Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Giessen, Germany
  • 2Center for International Development and Environmental Research, Justus-Liebig University Giessen, Giessen, Germany
  • 3Helmholtz-Zentrum Hereon, Geesthacht, Germany

The climate of the eastern Mediterranean and the Middle East is well documented in natural (speleothems, tree rings, sediments and pollen) and human-historical archives. The 6th century CE is of particular interest from both a historical and climatic perspective. It is a period of prosperity for the Eastern Byzantine Empire and political stability, but also a time when there was a heavily debated plague pandemic and significant climate variability associated with a major cluster of volcanic eruptions. Dynamical downscaling can bridge the gap between palaeo-records and climate reconstructions, which can be affected by various sources of uncertainty, and the coarsely resolved Earth System Models (ESMs) with 200 km or more horizontal resolution. A transient paleo-simulation with the appropriately adjusted regional climate model COSMO-CLM (CCLM, COSMO 5.0 clm16) is carried out to investigate possible links and feedbacks between the socio-political and economic conditions and the climate variability of that period in more detail.

The state-of-the-art and CMIP6 compliant forcing reconstructions of volcanic (stratospheric aerosol optical depth), orbital (eccentricity, obliquity, precession), solar (irradiance), land-use and greenhouse-gas changes used for the MPI-ESM-LR (Jungclaus et al. 2017) are therefore implemented in the regional climate model. The simulated temperature and precipitation are compared with those of other CMIP6 models as well as with proxy records and reconstructions. In connection with the two successive volcanic eruptions in 536 and 540 CE, the annual temperature of the entire region dropped noticeably until about 550 CE. The signal for precipitation is not as clear, but the years of the eruptions are the driest of the century in the eastern Sahara and Arabian Peninsula and the wettest in the eastern Mediterranean.

How to cite: Hartmann, E., Xoplaki, E., and Wagner, S.: Climate of the eastern Mediterranean and Middle East in the 6th century CE with COSMO-CLM , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14935, https://doi.org/10.5194/egusphere-egu24-14935, 2024.