EGU24-15020, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15020
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Intra-plate volcanism generated by slab-plume interaction: Insights from geodynamic modeling of the Eifel plume and its interaction with the European subducting lithosphere beneath the Alpine subduction zone

Yingying Li1,2, Bernhard Steinberger1, Sascha Brune1,3, and Eline Le Breton2
Yingying Li et al.
  • 1GFZ Potsdam, Section 2.5: Geodynamic modeling, Germany (yingli@gfz-potsdam.de)
  • 2Department of Earth Sciences, Freie Universität Berlin, Germany
  • 3Institute of Geosciences, University of Potsdam, Germany

The Eifel volcanic area in western Germany has been active for tens of million years. Geodetic observations, geochemical analysis and seismological studies all indicate that the source of these long-term volcanic activities is a mantle plume. However, it still remains controversial whether the Eifel plume has a deep origin. This is because the tomography images do not consistently show a continuous plume conduit between the surface and the core-mantle boundary. The Eifel plume is also not associated with any flood basalt province or a clearly age-progressive hotspot track, which is regarded as a key surface feature indicating a deep plume origin. In addition, it has been proposed that the Alpine subduction zone, south-east of the volcanic area, has created a stagnant slab in the mantle transition zone, which might be interacting with the Eifel plume.

Based on the previous studies and observations, our two contrasting hypotheses are as follows: (1) The Eifel plume is not rooted in the lower mantle. In this case, subduction beneath the Alps might trigger a return asthenospheric flow and the ascent of an upper-mantle plume, leading to the formation of intraplate volcanism beneath the European plate. (2) The Eifel plume is assisted from an upwelling in the lower mantle. In this case, the subducting plate might tilt the plume conduit and influence the position where volcanism takes place.

In this study, we apply the Finite-Element-Method geodynamic modeling code ASPECT to model the ascent of the Eifel plume and its interaction with the subducting slab. We design both slab advancing and slab retreating model set-ups, with and without a plume from the lower mantle beneath the subducting plate. We check whether and under what conditions the Eifel plume will be triggered behind the slab due to slab overturn. Preliminary results show that the return flow induced by subduction can help generate an upper-mantle plume and lead to the formation of volcanism. A series of models are also performed to investigate the effects of mantle viscosity and plume temperature on the plume-slab interaction.

How to cite: Li, Y., Steinberger, B., Brune, S., and Le Breton, E.: Intra-plate volcanism generated by slab-plume interaction: Insights from geodynamic modeling of the Eifel plume and its interaction with the European subducting lithosphere beneath the Alpine subduction zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15020, https://doi.org/10.5194/egusphere-egu24-15020, 2024.