EGU24-1508, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1508
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Late Holocene lake ecosystem change and the Southern Hemisphere Westerlies on sub-Antarctic Macquarie Island

Yuqiao Natalie Deng1,2, Stephen J. Roberts3, Krystyna M. Saunders4, and Bianca Perren3
Yuqiao Natalie Deng et al.
  • 1Department of Geography, University of Cambridge, Cambridge, United Kingdom (yd356@cam.ac.uk)
  • 2Department of Geography, University College London, London, United Kingdom
  • 3British Antarctic Survey, Cambridge, United Kingdom
  • 4Australian Nuclear Science and Technology Organisation, Sydney, Australia

The Southern Hemisphere Westerlies (SHW) are the world’s strongest zonal surface winds, and they profoundly influence ocean-atmospheric CO2 exchange, southern mid-latitude precipitation patterns and ocean-cryosphere dynamics. Stronger and more poleward-shifted SHW over the last few decades have been linked to anthropogenic warming and increased Southern Ocean ventilation and CO2 outgassing. A more in-depth understanding of past natural SHW variability is required to investigate the SHW response to future, anthropogenically impacted climate change scenarios (e.g., IPCC2023). Macquarie Island (54°30’S, 158°57’E) is located in the Southern Ocean within the SHW core belt, providing an ideal location for reconstructing past changes in the SHW. A strong and decreasing west-east conductivity gradient exists in lakes across the island due to the input of westerly wind-blown sea spray. Moreover, since diatom species present in surface sediments from these lakes are strongly determined by conductivity, we reconstructed variations in the SHW over the last 3000 years using a sediment record from Lake Tiobunga on the west coast. Decreases in the sediment accumulation rate and the dominant, low-conductivity Psammothidium taxa imply that the SHW over Macquarie Island were relatively stronger between ~3000–2300 cal BP and in the last thousand years. Conversely, an increase in Psammothidium taxa implies weaker SHW ~2300–1000 cal BP. Superimposed on these longer-term trends are centennial-scale fluctuations and a dramatic increase in diatom production after 1900 CE, which we associate with the well-documented invasive rabbit infestation. Our results provide a record and improve the understanding of the complex SHW atmospheric system for the last few millennia in the Pacific sector of the Southern Ocean.

How to cite: Deng, Y. N., Roberts, S. J., Saunders, K. M., and Perren, B.: Late Holocene lake ecosystem change and the Southern Hemisphere Westerlies on sub-Antarctic Macquarie Island, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1508, https://doi.org/10.5194/egusphere-egu24-1508, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 06 Apr 2024, no comments