EGU24-15173, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15173
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Non-invasive detection and visualization of microplastic particles, films and fibers in sandy soils 

Christian Tötzke1, Nikolay Kardjilov2, and Sascha E. Oswald1
Christian Tötzke et al.
  • 1University of Potsdam, Institute of Environmental Science and Geography, Potsdam, Germany (toetzke@uni-potsdam.de)
  • 2Helmholtz-Zentrum Berlin für Materialien und Energie, Department for Electrochemical Energy Storage, Berlin, Germany

The continuous input of microplastics into terrestrial environments is altering the physico-chemical properties of soils. The wide variety of microplastic particles in terms of particle shape, size, polymer type and additives makes microplastic pollution a multifaceted problem. Recent research efforts aim to improve the mechanistic understanding of how microplastics change soil structure and function and how this affects plants and other soil biota. A number of analytical detection methods are now available, but these typically involve sampling or processing steps that destroy the integrity of the sample. As a result, essential information about the soil structure and the spatial distribution of microplastics in the sample is irretrievably lost. Non-invasive tools are needed to directly study the interplay between microplastic particles and the 3D structure of the soil matrix. We introduce a combination of neutron and X-ray tomography as a non-invasive method capable of detecting and localizing microplastic particles in sandy soils (by neutrons) and simultaneously analyzing the 3D microstructure of the surrounding soil (by X-rays). The feasibility and limitations were tested in a series of sandy soil samples containing organic matter and microplastics of different plastic types and shapes, including particles, films, or fibers. Pretreatment with H2O2 was tested to facilitate the image analysis for samples with higher organic content.

Our three-dimensional imaging approach can provide detailed information about the spatial distribution of microplastics in the sample and can reproduce the size, shape, and orientation of particles, although it cannot distinguish between plastic types. Visualization of embedded polyethylene film fragments as well as fibers revealed perturbations in the soil matrix that can clearly affect its hydraulic and mechanical properties. Finally, we analyzed microplastics in the spatial context of plant-soil interactions for the root system of a lupine plant, demonstrating that it is also an attractive tool for in-situ studies of soil microplastic effects on plant roots. Overall, this approach offers the opportunity to study the impact of microplastics on soil hydromechanical properties, the interaction of biota with microplastics, and possibly also microplastics local fate in sandy soil, albeit not as a screening or high-throughput tool, but suited as powerful tool for dedicated process studies.

How to cite: Tötzke, C., Kardjilov, N., and Oswald, S. E.: Non-invasive detection and visualization of microplastic particles, films and fibers in sandy soils , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15173, https://doi.org/10.5194/egusphere-egu24-15173, 2024.