EGU24-15188, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15188
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Insights into Miocene paleostress history of the Eger Rift from mining-related structural datasets: the Most Basin, Bohemia

Radomír Grygar1, Karel Mach2, Roman Gramblička2, and Tomáš Novotný2
Radomír Grygar et al.
  • 1Ostrava 3, Czechia (radomir.grygar@gmail.com)
  • 2Severočeské doly a.s., Doly Bílina, ul. 5. května 213, 418 29 Bílina, Czech Republic

The Most Basin is the largest and best-preserved of sedimentary basins formed within the Eger Rift, the easternmost part of the European Cenozoic Rift System. Previous work on the tectono-sedimentary history of the basin and its surroundings has led to an interpretation of two main extensional phases that governed the Oligo-Miocene rift initiation and subsequent evolution. That interpretation has been derived mainly from large-scale considerations of main fault geometries, while a satisfactory support by a large mesoscopic dataset from the basin infill was lacking.

 

Systematic acquisition of mesoscopic structural data in some of the open-cast coal mines operating in the Most Basin has been motivated by prevention of accidents of bucket wheel excavators, threatened by sliding of blocks of mainly clayey sediments. As a result, over 5 thousand mesoscopic measurements were acquired in the Bílina Mine alone and hundreds in other mines over the past 13 years. In the Most Basin, the main coal seam is located close to the base of the basin fill. Open-case mines thus expose a thick overburden and, locally, also the underlying basement. The structural measurements involved the superposition and evolution of mesoscopic structural features in geological time, from Variscan metamorphic rocks through Cretaceous sediments and Oligocene volcanics through the Miocene coals and clastics of the basin fill.

 

Structural analysis of the dataset and statistical comparison of specific regions focused on

spatial and stratigraphic distribution of fault directions and inclination arrays, resulting in interpretation of spatial and stratigraphic distribution of local paleostress. The principal results are as follows:

  • the number of detected mesoscopic fault populations, as well as of interpreted deformation phases decreases upward through the stratigraphic column;
  • orientation of faults generally changes from a dominant E-W and NW-SE strike of population in the pre-Miocene formations into dominant SW-NE up to WSW-ENE strike within the youngest Libkovice Member (Early Miocene);
  • a trend of decreasing fault inclination from older, more consolidated formations to younger ones, most probably linked to rheological (stage of lithification) on brittle deformations;
  • generally, data evaluation of inclination and direction of faults gave generally similar results for the Bílina and Libouš mines, in spite of the 60 km distance between them and their proximity to different leading fault systems (Bílina and Victoria faults in the former case and the Ahníkov and Kralupy faults in the latter);
  • the large dataset of mesoscopic fault-slip data shows a generally more complex picture of possible paleostress evolution than the one derived from the geometries of the main bounding fault systems, due to the influence of local stress fields of normal and transtensional faults. The general picture, however, implies a plausible gradual evolution of extension vector from NNE-SSW to NW-SE orientations. throughout the early Miocene.

 

The Severočeské doly, a.s., supported the long-term acquisition of the structural dataset and its utilization for basic research purposes. This research has been supported by the Czech Science Foundation (GAČR) project 22-13980S.

How to cite: Grygar, R., Mach, K., Gramblička, R., and Novotný, T.: Insights into Miocene paleostress history of the Eger Rift from mining-related structural datasets: the Most Basin, Bohemia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15188, https://doi.org/10.5194/egusphere-egu24-15188, 2024.