EGU24-15191, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15191
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Constraining Vp and Vs structures using the dispersion of surface and leaky waves

Caiwang Shi, Xiaofei Chen, and Zhengbo Li
Caiwang Shi et al.
  • Southern University of Science and Technology, Department of Earth and space science, China (shicw@sustech.edu.cn)

The dispersion curves of surface waves have been widely used for the retrieval of subsurface structures. Because the surface-wave dispersion is not sensitive to Vp, classical dispersion inversion can only retrieve Vs structures. To retrieve Vp, the dispersion of guided-P waves, which belong to leaky waves, should be considered. Due to the difficulty in forward modeling, the quantitative analysis of the leaky-wave dispersion curves has been rarely reported. In this study, we first derive the sensitivity analysis method of the leaky-wave dispersion based on previously proposed the semi-analytical spectral element method. Then the quantitative sensitivity analysis of leaky-wave dispersion curves is carried out, which confirms the ability of guided-P wave dispersion to constrain the velocity structures. With the theoretical analysis, we propose a joint inversion method based on surface and guided-P wave dispersion curves, which can simultaneously retrieve Vp and Vs. To verify the effectiveness, the proposed joint inversion has been applied to different kinds of field data including ocean bottom seismometer data with active sources and the seismic data of Nevada in the United States in 2008. Both of the inversion tests show that the joint inversion of surface- and leaky-wave dispersion can effectively constrain the velocity structure of Vp and Vs at the same time, which helps to obtain more complete and accurate models than the traditional surface wave dispersion inversion.

How to cite: Shi, C., Chen, X., and Li, Z.: Constraining Vp and Vs structures using the dispersion of surface and leaky waves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15191, https://doi.org/10.5194/egusphere-egu24-15191, 2024.